Область допустимых значений: теория и практика. Что такое ОДЗ? Найти множество значений функции онлайн калькулятор

Тип задания: 13

Условие

а) Решите уравнение 2(\sin x-\cos x)=tgx-1.

б) \left[ \frac{3\pi }2;\,3\pi \right].

Показать решение

Решение

а) Раскрыв скобки и перенеся все слагаемые в левую часть, получим уравнение 1+2 \sin x-2 \cos x-tg x=0. Учитывая, что \cos x \neq 0, слагаемое 2 \sin x можно заменить на 2 tg x \cos x, получим уравнение 1+2 tg x \cos x-2 \cos x-tg x=0, которое способом группировки можно привести к виду (1-tg x)(1-2 \cos x)=0.

1) 1-tg x=0, tg x=1, x=\frac\pi 4+\pi n, n \in \mathbb Z;

2) 1-2 \cos x=0, \cos x=\frac12, x=\pm \frac\pi 3+2\pi n, n \in \mathbb Z.

б) С помощью числовой окружности отберём корни, принадлежащие промежутку \left[ \frac{3\pi }2;\, 3\pi \right].

x_1=\frac\pi 4+2\pi =\frac{9\pi }4,

x_2=\frac\pi 3+2\pi =\frac{7\pi }3,

x_3=-\frac\pi 3+2\pi =\frac{5\pi }3.

Ответ

а) \frac\pi 4+\pi n, \pm\frac\pi 3+2\pi n, n \in \mathbb Z;

б) \frac{5\pi }3, \frac{7\pi }3, \frac{9\pi }4.

Тип задания: 13
Тема: Область допустимых значений (ОДЗ)

Условие

а) Решите уравнение (2\sin ^24x-3\cos 4x)\cdot \sqrt {tgx}=0.

б) Укажите корни этого уравнения, принадлежащие промежутку \left(0;\,\frac{3\pi }2\right] ;

Показать решение

Решение

а) ОДЗ: \begin{cases} tgx\geqslant 0\\x\neq \frac\pi 2+\pi k,k \in \mathbb Z. \end{cases}

Исходное уравнение на ОДЗ равносильно совокупности уравнений

\left[\!\!\begin{array}{l} 2 \sin ^2 4x-3 \cos 4x=0,\\tg x=0. \end{array}\right.

Решим первое уравнение. Для этого сделаем замену \cos 4x=t, t \in [-1; 1]. Тогда \sin^24x=1-t^2. Получим:

2(1-t^2)-3t=0,

2t^2+3t-2=0,

t_1=\frac12, t_2=-2, t_2\notin [-1; 1].

\cos 4x=\frac12,

4x=\pm \frac\pi 3+2\pi n,

x=\pm \frac\pi {12}+\frac{\pi n}2, n \in \mathbb Z.

Решим второе уравнение.

tg x=0,\, x=\pi k, k \in \mathbb Z.

При помощи единичной окружности найдём решения, которые удовлетворяют ОДЗ.

Знаком «+» отмечены 1 -я и 3 -я четверти, в которых tg x>0.

Получим: x=\pi k, k \in \mathbb Z; x=\frac\pi {12}+\pi n, n \in \mathbb Z; x=\frac{5\pi }{12}+\pi m, m \in \mathbb Z.

б) Найдём корни, принадлежащие промежутку \left(0;\,\frac{3\pi }2\right].

x=\frac\pi {12}, x=\frac{5\pi }{12}; x=\pi ; x=\frac{13\pi }{12}; x=\frac{17\pi }{12}.

Ответ

а) \pi k, k \in \mathbb Z; \frac\pi {12}+\pi n, n \in \mathbb Z; \frac{5\pi }{12}+\pi m, m \in \mathbb Z.

б) \pi; \frac\pi {12}; \frac{5\pi }{12}; \frac{13\pi }{12}; \frac{17\pi }{12}.

Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Тип задания: 13
Тема: Область допустимых значений (ОДЗ)

Условие

а) Решите уравнение: \cos ^2x+\cos ^2\frac\pi 6=\cos ^22x+\sin ^2\frac\pi 3;

б) Укажите все корни, принадлежащие промежутку \left(\frac{7\pi }2;\,\frac{9\pi }2\right].

Показать решение

Решение

а) Так как \sin \frac\pi 3=\cos \frac\pi 6, то \sin ^2\frac\pi 3=\cos ^2\frac\pi 6, значит, заданное уравнение равносильно уравнению \cos^2x=\cos ^22x, которое, в свою очередь, равносильно уравнению \cos^2x-\cos ^2 2x=0.

Но \cos ^2x-\cos ^22x= (\cos x-\cos 2x)\cdot (\cos x+\cos 2x) и

\cos 2x=2 \cos ^2 x-1, поэтому уравнение примет вид

(\cos x-(2 \cos ^2 x-1))\,\cdot (\cos x+(2 \cos ^2 x-1))=0,

(2 \cos ^2 x-\cos x-1)\,\cdot (2 \cos ^2 x+\cos x-1)=0.

Тогда либо 2 \cos ^2 x-\cos x-1=0, либо 2 \cos ^2 x+\cos x-1=0.

Решая первое уравнение как квадратное уравнение относительно \cos x, получаем:

(\cos x)_{1,2}=\frac{1\pm\sqrt 9}4=\frac{1\pm3}4. Поэтому либо \cos x=1, либо \cos x=-\frac12. Если \cos x=1, то x=2k\pi , k \in \mathbb Z. Если \cos x=-\frac12, то x=\pm \frac{2\pi }3+2s\pi , s \in \mathbb Z.

Аналогично, решая второе уравнение, получаем либо \cos x=-1, либо \cos x=\frac12. Если \cos x=-1, то корни x=\pi +2m\pi , m \in \mathbb Z. Если \cos x=\frac12, то x=\pm \frac\pi 3+2n\pi , n \in \mathbb Z.

Объединим полученные решения:

x=m\pi , m \in \mathbb Z; x=\pm \frac\pi 3 +s\pi , s \in \mathbb Z.

б) Выберем корни, которые попали в заданный промежуток, с помощью числовой окружности.

Получим: x_1 =\frac{11\pi }3, x_2=4\pi , x_3 =\frac{13\pi }3.

Ответ

а) m\pi, m \in \mathbb Z; \pm \frac\pi 3 +s\pi , s \in \mathbb Z;

б) \frac{11\pi }3, 4\pi , \frac{13\pi }3.

Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Тип задания: 13
Тема: Область допустимых значений (ОДЗ)

Условие

а) Решите уравнение 10\cos ^2\frac x2=\frac{11+5ctg\left(\dfrac{3\pi }2-x\right) }{1+tgx}.

б) Укажите корни этого уравнения, принадлежащие интервалу \left(-2\pi ; -\frac{3\pi }2\right).

Показать решение

Решение

а) 1. Согласно формуле приведения, ctg\left(\frac{3\pi }2-x\right) =tgx. Областью определения уравнения будут такие значения x , что \cos x \neq 0 и tg x \neq -1. Преобразуем уравнение, пользуясь формулой косинуса двойного угла 2 \cos ^2 \frac x2=1+\cos x. Получим уравнение: 5(1+\cos x) =\frac{11+5tgx}{1+tgx}.

Заметим, что \frac{11+5tgx}{1+tgx}= \frac{5(1+tgx)+6}{1+tgx}= 5+\frac{6}{1+tgx}, поэтому уравнение принимает вид: 5+5 \cos x=5 +\frac{6}{1+tgx}. Отсюда \cos x =\frac{\dfrac65}{1+tgx}, \cos x+\sin x =\frac65.

2. Преобразуем \sin x+\cos x по формуле приведения и формуле суммы косинусов: \sin x=\cos \left(\frac\pi 2-x\right), \cos x+\sin x= \cos x+\cos \left(\frac\pi 2-x\right)= 2\cos \frac\pi 4\cos \left(x-\frac\pi 4\right)= \sqrt 2\cos \left(x-\frac\pi 4\right) = \frac65.

Отсюда \cos \left(x-\frac\pi 4\right) =\frac{3\sqrt 2}5. Значит, x-\frac\pi 4= arc\cos \frac{3\sqrt 2}5+2\pi k, k \in \mathbb Z,

или x-\frac\pi 4= -arc\cos \frac{3\sqrt 2}5+2\pi t, t \in \mathbb Z.

Поэтому x=\frac\pi 4+arc\cos \frac{3\sqrt 2}5+2\pi k,k \in \mathbb Z,

или x =\frac\pi 4-arc\cos \frac{3\sqrt 2}5+2\pi t,t \in \mathbb Z.

Найденные значения x принадлежат области определения.

б) Выясним сначала куда попадают корни уравнения при k=0 и t=0. Это будут соответственно числа a=\frac\pi 4+arccos \frac{3\sqrt 2}5 и b=\frac\pi 4-arccos \frac{3\sqrt 2}5.

1. Докажем вспомогательное неравенство:

\frac{\sqrt 2}{2}<\frac{3\sqrt 2}2<1.

Действительно, \frac{\sqrt 2}{2}=\frac{5\sqrt 2}{10}<\frac{6\sqrt2}{10}=\frac{3\sqrt2}{5}.

Заметим также, что \left(\frac{3\sqrt 2}5\right) ^2=\frac{18}{25}<1^2=1, значит \frac{3\sqrt 2}5<1.

2. Из неравенств (1) по свойству арккосинуса получаем:

arccos 1

0

Отсюда \frac\pi 4+0<\frac\pi 4+arc\cos \frac{3\sqrt 2}5<\frac\pi 4+\frac\pi 4,

0<\frac\pi 4+arccos \frac{3\sqrt 2}5<\frac\pi 2,

0

Аналогично, -\frac\pi 4

0=\frac\pi 4-\frac\pi 4<\frac\pi 4-arccos \frac{3\sqrt 2}5< \frac\pi 4<\frac\pi 2,

0

При k=-1 и t=-1 получаем корни уравнения a-2\pi и b-2\pi.

\Bigg(a-2\pi =-\frac74\pi +arccos \frac{3\sqrt 2}5,\, b-2\pi =-\frac74\pi -arccos \frac{3\sqrt 2}5\Bigg). При этом -2\pi

2\pi Значит, эти корни принадлежат заданному промежутку \left(-2\pi , -\frac{3\pi }2\right).

При остальных значениях k и t корни уравнения не принадлежат заданному промежутку.

Действительно, если k\geqslant 1 и t\geqslant 1, то корни больше 2\pi. Если k\leqslant -2 и t\leqslant -2, то корни меньше -\frac{7\pi }2.

Ответ

а) \frac\pi4\pm arccos\frac{3\sqrt2}5+2\pi k, k\in\mathbb Z;

б) -\frac{7\pi}4\pm arccos\frac{3\sqrt2}5.

Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Тип задания: 13
Тема: Область допустимых значений (ОДЗ)

Условие

а) Решите уравнение \sin \left(\frac\pi 2+x\right) =\sin (-2x).

б) Найдите все корни этого уравнения, принадлежащие промежутку ;

Показать решение

Решение

а) Преобразуем уравнение:

\cos x =-\sin 2x,

\cos x+2 \sin x \cos x=0,

\cos x(1+2 \sin x)=0,

\cos x=0,

x =\frac\pi 2+\pi n, n \in \mathbb Z;

1+2 \sin x=0,

\sin x=-\frac12,

x=(-1)^{k+1}\cdot \frac\pi 6+\pi k, k \in \mathbb Z.

б) Корни, принадлежащие отрезку , найдём с помощью единичной окружности.

Указанному промежутку принадлежит единственное число \frac\pi 2.

Ответ

а) \frac\pi 2+\pi n, n \in \mathbb Z; (-1)^{k+1}\cdot \frac\pi 6+\pi k, k \in \mathbb Z;

б) \frac\pi 2.

Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Тип задания: 13
Тема: Область допустимых значений (ОДЗ)

Условие

а) Решите уравнение \frac{\sin x-1}{1+\cos 2x}=\frac{\sin x-1}{1+\cos (\pi +x)}.

б) Найдите все корни этого уравнения, принадлежащие отрезку \left[ -\frac{3\pi }{2}; -\frac{\pi }2 \right].

Показать решение

Решение

а) Найдём ОДЗ уравнения: \cos 2x \neq -1, \cos (\pi +x) \neq -1; Отсюда ОДЗ: x \neq \frac \pi 2+\pi k,

k \in \mathbb Z, x \neq 2\pi n, n \in \mathbb Z. Заметим, что при \sin x=1, x=\frac \pi 2+2\pi k, k \in \mathbb Z.

Полученное множество значений x не входит в ОДЗ.

Значит, \sin x \neq 1.

Разделим обе части уравнения на множитель (\sin x-1), отличный от нуля. Получим уравнение \frac 1{1+\cos 2x}=\frac 1{1+\cos (\pi +x)}, или уравнение 1+\cos 2x=1+\cos (\pi +x). Применяя в левой части формулу понижения степени, а в правой — формулу приведения, получим уравнение 2 \cos ^2 x=1-\cos x. Это уравнение с помощью замены \cos x=t, где -1 \leqslant t \leqslant 1 сводим к квадратному: 2t^2+t-1=0, корни которого t_1=-1 и t_2=\frac12. Возвращаясь к переменной x , получим \cos x = \frac12 или \cos x=-1, откуда x=\frac \pi 3+2\pi m, m \in \mathbb Z, x=-\frac \pi 3+2\pi n, n \in \mathbb Z, x=\pi +2\pi k, k \in \mathbb Z.

б) Решим неравенства

1) -\frac{3\pi }2 \leqslant \frac{\pi }3+2\pi m \leqslant -\frac \pi 2 ,

2) -\frac{3\pi }2 \leqslant -\frac \pi 3+2\pi n \leqslant -\frac \pi {2,}

3) -\frac{3\pi }2 \leqslant \pi+2\pi k \leqslant -\frac \pi 2 , m, n, k \in \mathbb Z.

1) -\frac{3\pi }2 \leqslant \frac{\pi }3+2\pi m \leqslant -\frac \pi 2 , -\frac32 \leqslant \frac13+2m \leqslant -\frac12 -\frac{11}6 \leqslant 2m \leqslant -\frac56 , -\frac{11}{12} \leqslant m \leqslant -\frac5{12}.

\left [-\frac{11}{12};-\frac5{12}\right] .

2) -\frac {3\pi} 2 \leqslant -\frac{\pi }3+2\pi n \leqslant -\frac{\pi }{2}, -\frac32 \leqslant -\frac13 +2n \leqslant -\frac12 , -\frac76 \leqslant 2n \leqslant -\frac1{6}, -\frac7{12} \leqslant n \leqslant -\frac1{12}.

Нет целых чисел, принадлежащих промежутку \left[ -\frac7{12} ; -\frac1{12} \right].

3) -\frac{3\pi }2 \leqslant \pi +2\pi k\leqslant -\frac{\pi }2, -\frac32 \leqslant 1+2k\leqslant -\frac12, -\frac52 \leqslant 2k \leqslant -\frac32, -\frac54 \leqslant k \leqslant -\frac34.

Этому неравенству удовлетворяет k=-1, тогда x=-\pi.

Ответ

а) \frac \pi 3+2\pi m; -\frac \pi 3+2\pi n; \pi +2\pi k, m, n, k \in \mathbb Z;

б) -\pi .

Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

(\sin x-\cos 2x)\cdot (\sin x+\cos 2x) и

\cos 2x=1-2 \sin ^2 x, поэтому уравнение примет вид

(\sin x-(1-2 \sin ^2 x))\,\cdot (\sin x+(1-2 \sin ^2 x))=0,

(2 \sin ^2 x+\sin x-1)\,\cdot (2 \sin ^2 x-\sin x-1)=0.

Тогда либо 2 \sin ^2 x+\sin x-1=0, либо 2 \sin ^2 x-\sin x-1=0.

Решим первое уравнение как квадратное относительно \sin x,

(\sin x)_{1,2}=\frac{-1 \pm \sqrt 9}4=\frac{-1 \pm 3}4. Поэтому либо \sin x=-1, либо \sin x=\frac12. Если \sin x=-1, то x=\frac{3\pi }2+ 2k\pi , k \in \mathbb Z. Если \sin x=\frac12, то либо x=\frac\pi 6 +2s\pi , s \in \mathbb Z, либо x=\frac{5\pi }6+2t\pi , t \in \mathbb Z.

Аналогично, решая второе уравнение, получаем либо \sin x=1, либо \sin x=-\frac12. Тогда x =\frac\pi 2+2m\pi , m \in \mathbb Z, либо x=\frac{-\pi }6 +2n\pi , n \in \mathbb Z, либо x=\frac{-5\pi }6+2p\pi , p \in \mathbb Z.

Объединим полученные решения:

x=\frac\pi 2+m\pi,m\in\mathbb Z; x=\pm\frac\pi 6+s\pi,s \in \mathbb Z.

б) Выберем корни, которые попали в заданный промежуток с помощью числовой окружности.

Получим: x_1 =\frac{7\pi }2, x_2 =\frac{23\pi }6, x_3 =\frac{25\pi }6.

Ответ

а) \frac\pi 2+ m\pi , m \in \mathbb Z; \pm \frac\pi 6 +s\pi , s \in \mathbb Z;

б) \frac{7\pi }2;\,\,\frac{23\pi }6;\,\,\frac{25\pi }6.

Для начала научимся находить область определения суммы функций . Понятно, что такая функция имеет смысл для всех таких значений переменной, при которой имеют смысл все функции, составляющие сумму. Поэтому не вызывает сомнений справедливость следующего утверждения:

Если функция f - это сумма n функций f 1 , f 2 , …, f n , то есть, функция f задается формулой y=f 1 (x)+f 2 (x)+…+f n (x) , то областью определения функции f является пересечение областей определения функций f 1 , f 2 , …, f n . Запишем это как .

Давайте условимся и дальше использовать записи, подобные последней, под которыми будем понимать , записанных внутри фигурной скобки, либо одновременное выполнение каких-либо условий. Это удобно и достаточно естественно перекликается со смыслом систем.

Пример.

Дана функция y=x 7 +x+5+tgx , и надо найти ее область определения.

Решение.

Функция f представлена суммой четырех функций: f 1 - степенной функции с показателем 7 , f 2 - степенной функции с показателем 1 , f 3 - постоянной функции и f 4 - функции тангенс.

Взглянув в таблицу областей определения основных элементарных функций, находим, что D(f 1)=(−∞, +∞) , D(f 2)=(−∞, +∞) , D(f 3)=(−∞, +∞) , а областью определения тангенса является множество всех действительных чисел, кроме чисел .

Область определения функции f – это пересечение областей определения функций f 1 , f 2 , f 3 и f 4 . Достаточно очевидно, что это есть множество всех действительных чисел, за исключением чисел .

Ответ:

множество всех действительных чисел, кроме .

Переходим к нахождению области определения произведения функций . Для этого случая имеет место аналогичное правило:

Если функция f - это произведение n функций f 1 , f 2 , …, f n , то есть, функция f задается формулой y=f 1 (x)·f 2 (x)·…·f n (x) , то область определения функции f есть пересечение областей определения функций f 1 , f 2 , …, f n . Итак, .

Оно и понятно, в указанной области определены все функции произведения, а значит и сама функция f .

Пример.

Y=3·arctgx·lnx .

Решение.

Структуру правой части формулы, задающей функцию, можно рассматривать так f 1 (x)·f 2 (x)·f 3 (x) , где f 1 – это постоянная функция, f 2 – это функция арктангенс, а f 3 – логарифмическая функция с основанием e .

Нам известно, что D(f 1)=(−∞, +∞) , D(f 2)=(−∞, +∞) и D(f 3)=(0, +∞) . Тогда .

Ответ:

областью определения функции y=3·arctgx·lnx является множество всех действительных положительных чисел.

Отдельно остановимся на нахождении области определения функции, заданной формулой y=C·f(x) , где С – некоторое действительное число. Легко показать, что область определения этой функции и область определения функции f совпадают. Действительно, функция y=C·f(x) – это произведение постоянной функции и функции f . Областью определения постоянной функции является множество всех действительных чисел, а область определения функции f есть D(f) . Тогда область определения функции y=C·f(x) есть , что и требовалось показать.

Итак, области определения функций y=f(x) и y=C·f(x) , где С – некоторое действительное число, совпадают. Например, область определения корня есть , становится ясно, что D(f) - это множество всех x из области определения функции f 2 , для которых f 2 (x) входит в область определения функции f 1 .

Таким образом, область определения сложной функции y=f 1 (f 2 (x)) - это пересечение двух множеств: множества всех таких x , что x∈D(f 2) , и множества всех таких x , для которых f 2 (x)∈D(f 1) . То есть, в принятых нами обозначениях (это по сути система неравенств).

Давайте рассмотрим решения нескольких примеров. В процессе мы не будем подробно описывать , так как это выходит за рамки этой статьи.

Пример.

Найти область определения функции y=lnx 2 .

Решение.

Исходную функцию можно представить в виде y=f 1 (f 2 (x)) , где f 1 – логарифм с основанием e , а f 2 – степенная функция с показателем 2 .

Обратившись к известным областям определения основных элементарных функций, имеем D(f 1)=(0, +∞) и D(f 2)=(−∞, +∞) .

Тогда

Так мы нашли нужную нам область определения функции, ей является множество всех действительных чисел, кроме нуля.

Ответ:

(−∞, 0)∪(0, +∞) .

Пример.

Какова область определения функции ?

Решение.

Данная функция сложная, ее можно рассматривать как y=f 1 (f 2 (x)) , где f 1 – степенная функция с показателем , а f 2 – функция арксинус, и нам нужно найти ее область определения.

Посмотрим, что нам известно: D(f 1)=(0, +∞) и D(f 2)=[−1, 1] . Остается найти пересечение множеств таких значений x , что x∈D(f 2) и f 2 (x)∈D(f 1) :

Чтобы arcsinx>0 вспомним свойства функции арксинус . Арксинус возрастает на всей области определения [−1, 1] и обращается в ноль при x=0 , следовательно, arcsinx>0 для любого x из промежутка (0, 1] .

Вернемся к системе:

Таким образом, искомая область определения функции есть полуинтервал (0, 1] .

Ответ:

(0, 1] .

Теперь давайте перейдем к сложным функциям общего вида y=f 1 (f 2 (…f n (x)))) . Область определения функции f в этом случае находится как .

Пример.

Найти область определения функции .

Решение.

Заданную сложную функцию можно расписать как y=f 1 (f 2 (f 3 (x))) , где f 1 – sin , f 2 – функция корень четвертой степени, f 3 – lg .

Нам известно, что D(f 1)=(−∞, +∞) , D(f 2)=∪}