Общая формула для синуса уравнение. Методы решения тригонометрических уравнений

Соблюдение Вашей конфиденциальности важно для нас. По этой причине, мы разработали Политику Конфиденциальности, которая описывает, как мы используем и храним Вашу информацию. Пожалуйста, ознакомьтесь с нашими правилами соблюдения конфиденциальности и сообщите нам, если у вас возникнут какие-либо вопросы.

Сбор и использование персональной информации

Под персональной информацией понимаются данные, которые могут быть использованы для идентификации определенного лица либо связи с ним.

От вас может быть запрошено предоставление вашей персональной информации в любой момент, когда вы связываетесь с нами.

Ниже приведены некоторые примеры типов персональной информации, которую мы можем собирать, и как мы можем использовать такую информацию.

Какую персональную информацию мы собираем:

  • Когда вы оставляете заявку на сайте, мы можем собирать различную информацию, включая ваши имя, номер телефона, адрес электронной почты и т.д.

Как мы используем вашу персональную информацию:

  • Собираемая нами персональная информация позволяет нам связываться с вами и сообщать об уникальных предложениях, акциях и других мероприятиях и ближайших событиях.
  • Время от времени, мы можем использовать вашу персональную информацию для отправки важных уведомлений и сообщений.
  • Мы также можем использовать персональную информацию для внутренних целей, таких как проведения аудита, анализа данных и различных исследований в целях улучшения услуг предоставляемых нами и предоставления Вам рекомендаций относительно наших услуг.
  • Если вы принимаете участие в розыгрыше призов, конкурсе или сходном стимулирующем мероприятии, мы можем использовать предоставляемую вами информацию для управления такими программами.

Раскрытие информации третьим лицам

Мы не раскрываем полученную от Вас информацию третьим лицам.

Исключения:

  • В случае если необходимо - в соответствии с законом, судебным порядком, в судебном разбирательстве, и/или на основании публичных запросов или запросов от государственных органов на территории РФ - раскрыть вашу персональную информацию. Мы также можем раскрывать информацию о вас если мы определим, что такое раскрытие необходимо или уместно в целях безопасности, поддержания правопорядка, или иных общественно важных случаях.
  • В случае реорганизации, слияния или продажи мы можем передать собираемую нами персональную информацию соответствующему третьему лицу – правопреемнику.

Защита персональной информации

Мы предпринимаем меры предосторожности - включая административные, технические и физические - для защиты вашей персональной информации от утраты, кражи, и недобросовестного использования, а также от несанкционированного доступа, раскрытия, изменения и уничтожения.

Соблюдение вашей конфиденциальности на уровне компании

Для того чтобы убедиться, что ваша персональная информация находится в безопасности, мы доводим нормы соблюдения конфиденциальности и безопасности до наших сотрудников, и строго следим за исполнением мер соблюдения конфиденциальности.

Урок комплексного применения знаний.

Цели урока.

  1. Рассмотреть различные методы решения тригонометрических уравнений.
  2. Развитие творческих способностей учеников путем решения уравнений.
  3. Побуждение учеников к самоконтролю, взаимоконтролю, самоанализу своей учебной деятельности.

Оборудование: экран, проектор, справочный материал.

Ход урока

Вводная беседа.

Основным методом решения тригонометрических уравнений является сведения их простейшим. При этом применяются обычные способы, например, разложения на множители, а также приемы, используемые только для решения тригонометрических уравнений. Этих приемов довольно много, например, различные тригонометрические подстановки, преобразования углов, преобразования тригонометрических функций. Беспорядочное применение каких-либо тригонометрических преобразований обычно не упрощает уравнение, а катастрофически его усложняет. Чтобы выработать в общих чертах план решения уравнения, наметить путь сведения уравнения к простейшему, нужно в первую очередь проанализировать углы – аргументы тригонометрических функций, входящих в уравнение.

Сегодня мы поговорим о методах решения тригонометрических уравнений. Правильно выбранный метод часто позволяет существенно упростить решение, поэтому все изученные нами методы всегда нужно держать в зоне своего внимания, чтобы решать тригонометрические уравнения наиболее подходящим методом.

II. (С помощью проектора повторяем методы решения уравнений.)

1. Метод приведения тригонометрического уравнения к алгебраическому.

Необходимо выразить все тригонометрические функции через одну, с одним и тем же аргументом. Это можно сделать с помощью основного тригонометрического тождества и его следствий. Получим уравнение с одной тригонометрической функцией. Приняв ее за новую неизвестную, получим алгебраическое уравнение. Находим его корни и возвращаемся к старой неизвестной, решая простейшие тригонометрические уравнения.

2. Метод разложения на множители.

Для изменения углов часто бывают полезны формулы приведения, суммы и разности аргументов, а также формулы преобразования суммы (разности) тригонометрических функций в произведение и наоборот.

sin x + sin 3x = sin 2x + sin4x

3. Метод введения дополнительного угла.

4. Метод использования универсальной подстановки.

Уравнения вида F(sinx, cosx, tgx) = 0 сводятся к алгебраическому при помощи универсальной тригонометрической подстановки

Выразив синус, косинус и тангенс через тангенс половинного угла. Этот прием может привести к уравнению высокого порядка. Решение которого затруднительно.

Соблюдение Вашей конфиденциальности важно для нас. По этой причине, мы разработали Политику Конфиденциальности, которая описывает, как мы используем и храним Вашу информацию. Пожалуйста, ознакомьтесь с нашими правилами соблюдения конфиденциальности и сообщите нам, если у вас возникнут какие-либо вопросы.

Сбор и использование персональной информации

Под персональной информацией понимаются данные, которые могут быть использованы для идентификации определенного лица либо связи с ним.

От вас может быть запрошено предоставление вашей персональной информации в любой момент, когда вы связываетесь с нами.

Ниже приведены некоторые примеры типов персональной информации, которую мы можем собирать, и как мы можем использовать такую информацию.

Какую персональную информацию мы собираем:

  • Когда вы оставляете заявку на сайте, мы можем собирать различную информацию, включая ваши имя, номер телефона, адрес электронной почты и т.д.

Как мы используем вашу персональную информацию:

  • Собираемая нами персональная информация позволяет нам связываться с вами и сообщать об уникальных предложениях, акциях и других мероприятиях и ближайших событиях.
  • Время от времени, мы можем использовать вашу персональную информацию для отправки важных уведомлений и сообщений.
  • Мы также можем использовать персональную информацию для внутренних целей, таких как проведения аудита, анализа данных и различных исследований в целях улучшения услуг предоставляемых нами и предоставления Вам рекомендаций относительно наших услуг.
  • Если вы принимаете участие в розыгрыше призов, конкурсе или сходном стимулирующем мероприятии, мы можем использовать предоставляемую вами информацию для управления такими программами.

Раскрытие информации третьим лицам

Мы не раскрываем полученную от Вас информацию третьим лицам.

Исключения:

  • В случае если необходимо - в соответствии с законом, судебным порядком, в судебном разбирательстве, и/или на основании публичных запросов или запросов от государственных органов на территории РФ - раскрыть вашу персональную информацию. Мы также можем раскрывать информацию о вас если мы определим, что такое раскрытие необходимо или уместно в целях безопасности, поддержания правопорядка, или иных общественно важных случаях.
  • В случае реорганизации, слияния или продажи мы можем передать собираемую нами персональную информацию соответствующему третьему лицу – правопреемнику.

Защита персональной информации

Мы предпринимаем меры предосторожности - включая административные, технические и физические - для защиты вашей персональной информации от утраты, кражи, и недобросовестного использования, а также от несанкционированного доступа, раскрытия, изменения и уничтожения.

Соблюдение вашей конфиденциальности на уровне компании

Для того чтобы убедиться, что ваша персональная информация находится в безопасности, мы доводим нормы соблюдения конфиденциальности и безопасности до наших сотрудников, и строго следим за исполнением мер соблюдения конфиденциальности.

Методы решения тригонометрических уравнений

Введение 2

Методы решения тригонометрических уравнений 5

Алгебраический 5

Решение уравнений с помощью условия равенства одноимённых тригонометрических функций 7

Разложение на множители 8

Приведение к однородному уравнению 10

Введение вспомогательного угла 11

Преобразование произведения в сумму 14

Универсальная подстановка 14

Заключение 17

Введение

До десятого класса порядок действий многих упражнений, ведущий к цели, как правило, однозначно определен. Например, линейные и квадратные уравнения и неравенства, дробные уравнения и уравнения, приводимые к квадратным, и т.п. Не разбирая подробно принцип решения каждого из упомянутых примеров, отметим то общее, что необходимо для их успешного решения.

В большинстве случаев надо установить, к какому типу относится задача, вспомнить последовательность действий, ведущих к цели, и выполнить эти действия. Очевидно, что успех или неуспех ученика в овладении приемами решения уравнений зависит главным образом от того, насколько он сумеет правильно определить тип уравнения и вспомнить последовательность всех этапов его решения. Разумеется, при этом предполагается, что ученик владеет навыками выполнения тождественных преобразований и вычислений.

Совершенно иная ситуация получается, когда школьник встречается с тригонометрическими уравнениями. При этом установить факт, что уравнение является тригонометрическим, нетрудно. Сложности возникают при нахождении порядка действий, которые бы привели к положительному результату. И здесь перед учеником встают две проблемы. По внешнему виду уравнения трудно определить тип. А не зная типа, почти невозможно выбрать нужную формулу из нескольких десятков, имеющихся в распоряжении.

Чтобы помочь ученикам найти верную дорогу в сложном лабиринте тригонометрических уравнений, их сначала знакомят с уравнениями, которые после введения новой переменной приводятся к квадратным. Затем решают однородные уравнения и приводимые к ним. Все заканчивается, как правило, уравнениями, для решения которых надо разложить на множители левую часть, приравняв затем каждый из множителей к нулю.

Понимая, что разобранных на уроках полутора десятков уравнений явно недостаточно, чтобы пустить ученика в самостоятельное плавание по тригонометрическому "морю", учитель добавляет от себя еще несколько рекомендаций.

Чтобы решить тригонометрическое уравнение, надо попытаться:

Привести все функции входящие в уравнение к «одинаковым углам»;

Привести уравнение к "одинаковым функциям";

Разложить левую часть уравнения на множители и т.п.

Но, несмотря на знание основных типов тригонометрических уравнений и нескольких принципов поиска их решения, многие ученики по-прежнему оказываются в тупике перед каждым уравнением, незначительно отличающимся от тех, что решались раньше. Остается неясным, к чему следует стремиться, имея то или иное уравнение, почему в одном случае надо применять формулы двойного угла, в другом - половинного, а в третьем - формулы сложения и т.д.

Определение 1. Тригонометрическим называется уравнение, в котором неизвестное содержится под знаком тригонометрических функций.

Определение 2. Говорят, что в тригонометрическом уравнении одинаковые углы, если все тригонометрические функции, входящие в него, имеют равные аргументы. Говорят, что в тригонометрическом уравнении одинаковые функции, если оно содержит только одну из тригонометрических функций.

Определение 3. Степенью одночлена, содержащего тригонометрические функции, называется сумма показателей степеней тригонометрических функций, входящих в него.

Определение 4. Уравнение называется однородным, если все одночлены, входящие в него, имеют одну и ту же степень. Эта степень называется порядком уравнения.

Определение 5. Тригонометрическое уравнение, содержащее только функции sin и cos , называется однородным, если все одночлены относительно тригонометрических функций имеют одинаковую степень, а сами тригонометрические функции имеют равные углы и число одночленов на 1 больше порядка уравнения.

Методы решения тригонометрических уравнений.

Решение тригонометрических уравнений состоит из двух этапов: преобразование уравнения для получения его простейшего вида и решение полученного простейшего тригонометрического уравнения. Существует семь основных методов решения тригонометрических уравнений.

I . Алгебраический метод. Этот метод хорошо известен из алгебры. (Метод замены переменный и подстановки).

Решить уравнения.

1)

Введём обозначение x =2 sin 3 t , получим

Решая это уравнение, получаем:
или

т.е. можно записать

При записи полученного решения из-за наличия знаков степень
записывать не имеет смысла.

Ответ:

Обозначим

Получаем квадратное уравнение
. Его корнями являются числа
и
. Поэтому данное уравнение сводится к простейшим тригонометрическим уравнениям
и
. Решая их, находим, что
или
.

Ответ:
;
.

Обозначим

не удовлетворяет условию

Значит

Ответ:

Преобразуем левую часть уравнения:

Таким образом, данное исходное уравнение можно записать в виде:

, т.е.

Обозначив
, получим
Решив данное квадратное уравнение имеем:

не удовлетворяет условию

Записываем решение исходного уравнения:

Ответ:

Подстановка
сводит данное уравнение к квадратному уравнению
. Его корнями являются числа
и
. Так как
, то заданное уравнение корней не имеет.

Ответ: корней нет.

II . Решение уравнений с помощью условия равенства одноимённых тригонометрических функций.

а)
, если

б)
, если

в)
, если

Используя данные условия, рассмотрим решение следующих уравнений:

6)

Пользуясь сказанным в п. а) получаем, что уравнение имеет решение в том и только в том случае, когда
.

Решая это уравнение, находим
.

Имеем две группы решений:

.

7) Решить уравнение:
.

Пользуясь условием п. б) выводим, что
.

Решая эти квадратные уравнения, получаем:

.

8) Решить уравнение
.

Из данного уравнения выводим, что . Решая это квадратное уравнение, находим, что

.

III . Разложение на множители.

Этот метод рассматриваем на примерах.

9) Решить уравнение
.

Решение. Перенесём все члены уравнения влево: .

Преобразуем и разложим на множители выражение в левой части уравнения:
.

.

.

1)
2)

Т.к.
и
не принимают значение нуль

одновременно, то разделим обе части

уравнения на
,

Ответ:

10) Решить уравнение:

Решение.

или


Ответ:

11) Решить уравнение

Решение:

1)
2)
3)

,


Ответ:

IV . Приведение к однородному уравнению.

Чтобы решить однородное уравнение надо:

Перенести все его члены в левую часть;

Вынести все общие множители за скобки;

Приравнять все множители и скобки к нулю;

Скобки, приравненные к нулю, дают однородное уравнение меньшей степени, которое следует разделить на
(или
) в старшей степени;

Решить полученное алгебраическое уравнение относительно
.

Рассмотрим примеры:

12) Решить уравнение:

Решение.

Разделим обе части уравнения на
,

Вводя обозначения
, именем

корни этого уравнения:

отсюда 1)
2)

Ответ:

13) Решить уравнение:

Решение. Используя формулы двойного угла и основное тригонометрическое тождество, приводим данное уравнение к половинному аргументу:

После приведения подобных слагаемых имеем:

Разделив однородное последнее уравнение на
, получим

Обозначу
, получим квадратное уравнение
, корнями которого являются числа

Таким образом

Выражение
обращается в нуль при
, т.е. при
,
.

Полученное нами решение уравнения не включает в себя данные числа.

Ответ:
, .

V . Введение вспомогательного угла.

Рассмотрим уравнение вида

Где a, b, c - коэффициенты, x - неизвестное.

Разделим обе части этого уравнения на

Теперь коэффициенты уравнения обладают свойствами синуса и косинуса, а именно: модуль каждого из них не превосходит единицы, а сумма их квадратов равна 1.

Тогда можно обозначить их соответственно
(здесь - вспомогательный угол) и наше уравнение принимает вид: .

Тогда

И его решение

Заметим, что введенные обозначения взаимно заменяемы.

14) Решить уравнение:

Решение. Здесь
, поэтому делим обе части уравнения на

Ответ:

15) Решить уравнение

Решение. Так как
, то данное уравнение равносильно уравнению


Так как
, то существует такой угол , что
,
(т.е.
).

Имеем

Так как
, то окончательно получаем:


.

Заметим, что уравнение вида имеют решение тогда и только тогда, когда

16) Решить уравнение:

Для решения данного уравнения сгруппируем тригонометрические функции с одинаковыми аргументами

Разделим обе части уравнения на два

Преобразуем сумму тригонометрических функций в произведение:

Ответ:

VI . Преобразование произведения в сумму.

Здесь используются соответствующие формулы.

17) Решить уравнение:

Решение. Преобразуем левую часть в сумму:

VII. Универсальная подстановка.

,

эти формулы верны для всех

Подстановка
называется универсальной.

18) Решить уравнение:

Решение: Заменим и
на их выражение через
и обозначим
.

Получаем рациональное уравнение
, которое преобразуется в квадратное
.

Корнями этого уравнения являются числа
.

Поэтому задача свелась к решению двух уравнений
.

Находим, что
.

Значение вида
исходному уравнению не удовлетворяет, что проверяется проверкой - подстановкой данного значения t в исходное уравнение.

Ответ:
.

Замечание. Уравнение 18 можно было решить иным способом.

Разделим обе части этого уравнения на 5 (т.е. на
):
.

Так как
, то существует такое число
, что
и
. Поэтому уравнение принимает вид:
или
. Отсюда находим, что
где
.

19) Решить уравнение
.

Решение. Так как функции
и
имеют наибольшее значение, равное 1, то их сумма равна 2, если
и
, одновременно, то есть
.

Ответ:
.

При решении этого уравнения применялась ограниченность функций и .

Заключение.

Работая над темой « Решения тригонометрических уравнений » каждому учителю полезно выполнять следующие рекомендации:

    Систематизировать методы решения тригонометрических уравнений.

    Выбрать для себя шаги по выполнению анализа уравнения и признаки целесообразности использования того или иного метод решения.

    Продумать способы самоконтроля своей деятельности по реализации метода.

    Научиться составлять « свои » уравнения на каждый из изучаемых методов.

Приложение №1

Решите однородные или приводящиеся к однородным уравнения.

1.

Отв.

Отв.

Отв.

5.

Отв.

Отв.

7.

Отв.

Отв.

Тригонометрические уравнения - тема не самая простая. Уж больно они разнообразные.) Например, такие:

sin 2 x + cos3x = ctg5x

sin(5x+π /4) = ctg(2x-π /3)

sinx + cos2x + tg3x = ctg4x

И тому подобное...

Но у этих (и всех остальных) тригонометрических монстров есть два общих и обязательных признака. Первый - вы не поверите - в уравнениях присутствуют тригонометрические функции.) Второй: все выражения с иксом находятся внутри этих самых функций. И только там! Если икс появится где-нибудь снаружи, например, sin2x + 3x = 3, это уже будет уравнение смешанного типа. Такие уравнения требуют индивидуального подхода. Здесь мы их рассматривать не будем.

Злые уравнения в этом уроке мы тоже решать не будем.) Здесь мы будем разбираться с самыми простыми тригонометрическими уравнениями. Почему? Да потому, что решение любых тригонометрических уравнений состоит из двух этапов. На первом этапе злое уравнение путём самых различных преобразований сводится к простому. На втором - решается это самое простое уравнение. Иначе - никак.

Так что, если на втором этапе у вас проблемы - первый этап особого смысла не имеет.)

Как выглядят элементарные тригонометрические уравнения?

sinx = а

cosx = а

tgx = а

ctgx = а

Здесь а обозначает любое число. Любое.

Кстати, внутри функции может находиться не чистый икс, а какое-то выражение, типа:

cos(3x+π /3) = 1/2

и тому подобное. Это усложняет жизнь, но на методе решения тригонометрического уравнения никак не сказывается.

Как решать тригонометрические уравнения?

Тригонометрические уравнения можно решать двумя путями. Первый путь: с использованием логики и тригонометрического круга. Этот путь мы рассмотрим здесь. Второй путь - с использованием памяти и формул - рассмотрим в следующем уроке.

Первый путь понятен, надёжен, и его трудно забыть.) Он хорош для решения и тригонометрических уравнений, и неравенств, и всяких хитрых нестандартных примеров. Логика сильнее памяти!)

Решаем уравнения с помощью тригонометрического круга.

Включаем элементарную логику и умение пользоваться тригонометрическим кругом. Не умеете!? Однако... Трудно же вам в тригонометрии придётся...) Но не беда. Загляните в уроки "Тригонометрический круг...... Что это такое?" и "Отсчёт углов на тригонометрическом круге". Там всё просто. В отличие от учебников...)

Ах, вы в курсе!? И даже освоили "Практическую работу с тригонометрическим кругом" !? Примите поздравления. Эта тема будет вам близка и понятна.) Что особо радует, тригонометрическому кругу безразлично, какое уравнение вы решаете. Синус, косинус, тангенс, котангенс - ему всё едино. Принцип решения один.

Вот и берём любое элементарное тригонометрическое уравнение. Хотя бы это:

cosx = 0,5

Надо найти икс. Если говорить человеческим языком, нужно найти угол (икс), косинус которого равен 0,5.

Как мы ранее использовали круг? Мы рисовали на нём угол. В градусах или радианах. И сразу видели тригонометрические функции этого угла. Сейчас поступим наоборот. Нарисуем на круге косинус, равный 0,5 и сразу увидим угол. Останется только записать ответ.) Да-да!

Рисуем круг и отмечаем косинус, равный 0,5. На оси косинусов, разумеется. Вот так:

Теперь нарисуем угол, который даёт нам этот косинус. Наведите курсор мышки на рисунок (или коснитесь картинки на планшете), и увидите этот самый угол х.

Косинус какого угла равен 0,5?

х = π /3

cos60° = cos(π /3 ) = 0,5

Кое-кто скептически хмыкнет, да... Мол, стоило ли круг городить, когда и так всё ясно... Можно, конечно, хмыкать...) Но дело в том, что это - ошибочный ответ. Вернее, недостаточный. Знатоки круга понимают, что здесь ещё целая куча углов, которые тоже дают косинус, равный 0,5.

Если провернуть подвижную сторону ОА на полный оборот , точка А попадёт в исходное положение. С тем же косинусом, равным 0,5. Т.е. угол изменится на 360° или 2π радиан, а косинус - нет. Новый угол 60° + 360° = 420° тоже будет решением нашего уравнения, т.к.

Таких полных оборотов можно накрутить бесконечное множество... И все эти новые углы будут решениями нашего тригонометрического уравнения. И их все надо как-то записать в ответ. Все. Иначе решение не считается, да...)

Математика умеет это делать просто и элегантно. В одном кратком ответе записывать бесконечное множество решений. Вот как это выглядит для нашего уравнения:

х = π /3 + 2π n, n ∈ Z

Расшифрую. Всё-таки писать осмысленно приятнее, чем тупо рисовать какие-то загадочные буковки, правда?)

π /3 - это тот самый угол, который мы увидели на круге и определили по таблице косинусов.

- это один полный оборот в радианах.

n - это количество полных, т.е. целых оборотов. Понятно, что n может быть равно 0, ±1, ±2, ±3.... и так далее. Что и указано краткой записью:

n ∈ Z

n принадлежит ( ) множеству целых чисел (Z ). Кстати, вместо буквы n вполне могут употребляться буквы k, m, t и т.д.

Эта запись означает, что вы можете взять любое целое n . Хоть -3, хоть 0, хоть +55. Какое хотите. Если подставите это число в запись ответа, получите конкретный угол, который обязательно будет решением нашего сурового уравнения.)

Или, другими словами, х = π /3 - это единственный корень из бесконечного множества. Чтобы получить все остальные корни, достаточно к π /3 прибавить любое количество полных оборотов (n ) в радианах. Т.е. 2π n радиан.

Всё? Нет. Я специально удовольствие растягиваю. Чтобы запомнилось получше.) Мы получили только часть ответов к нашему уравнению. Эту первую часть решения я запишу вот как:

х 1 = π /3 + 2π n, n ∈ Z

х 1 - не один корень, это целая серия корней, записанная в краткой форме.

Но есть ещё углы, которые тоже дают косинус, равный 0,5!

Вернёмся к нашей картинке, по которой записывали ответ. Вот она:

Наводим мышку на картинку и видим ещё один угол, который тоже даёт косинус 0,5. Как вы думаете, чему он равен? Треугольнички одинаковые... Да! Он равен углу х , только отложен в отрицательном направлении. Это угол -х. Но икс-то мы уже вычислили. π /3 или 60°. Стало быть, можно смело записать:

х 2 = - π /3

Ну и, разумеется, добавляем все углы, которые получаются через полные обороты:

х 2 = - π /3 + 2π n, n ∈ Z

Вот теперь всё.) По тригонометрическому кругу мы увидели (кто понимает, конечно)) все углы, дающие косинус, равный 0,5. И записали эти углы в краткой математической форме. В ответе получились две бесконечные серии корней:

х 1 = π /3 + 2π n, n ∈ Z

х 2 = - π /3 + 2π n, n ∈ Z

Это правильный ответ.

Надеюсь, общий принцип решения тригонометрических уравнений с помощью круга понятен. Отмечаем на круге косинус (синус, тангенс, котангенс) из заданного уравнения, рисуем соответствующие ему углы и записываем ответ. Конечно, нужно сообразить, что за углы мы увидели на круге. Иногда это не так очевидно. Ну так я и говорил, что здесь логика требуется.)

Для примера разберём ещё одно тригонометрическое уравнение:

Прошу учесть, что число 0,5 - это не единственно возможное число в уравнениях!) Просто мне его писать удобнее, чем корни и дроби.

Работаем по общему принципу. Рисуем круг, отмечаем (на оси синусов, разумеется!) 0,5. Рисуем сразу все углы, соответствующие этому синусу. Получим вот такую картину:

Сначала разбираемся с углом х в первой четверти. Вспоминаем таблицу синусов и определяем величину этого угла. Дело нехитрое:

х = π /6

Вспоминаем про полные обороты и, с чистой совестью, записываем первую серию ответов:

х 1 = π /6 + 2π n, n ∈ Z

Половина дела сделана. А вот теперь надо определить второй угол... Это похитрее, чем в косинусах, да... Но логика нас спасёт! Как определить второй угол через х? Да легко! Треугольнички на картинке одинаковые, и красный угол х равен углу х . Только отсчитан он от угла π в отрицательном направлении. Потому и красный.) А нам для ответа нужен угол, отсчитанный правильно, от положительной полуоси ОХ, т.е. от угла 0 градусов.

Наводим курсор на рисунок и всё видим. Первый угол я убрал, чтобы не усложнял картинку. Интересующий нас угол (нарисован зелёным) будет равен:

π - х

Икс мы знаем, это π /6 . Стало быть, второй угол будет:

π - π /6 = 5π /6

Снова вспоминаем про добавку полных оборотов и записываем вторую серию ответов:

х 2 = 5π /6 + 2π n, n ∈ Z

Вот и всё. Полноценный ответ состоит из двух серий корней:

х 1 = π /6 + 2π n, n ∈ Z

х 2 = 5π /6 + 2π n, n ∈ Z

Уравнения с тангенсом и котангенсом можно легко решать по тому же общему принципу решения тригонометрических уравнений. Если, конечно, знаете, как нарисовать тангенс и котангенс на тригонометрическом круге.

В приведённых выше примерах я использовал табличное значение синуса и косинуса: 0,5. Т.е. одно из тех значений, которые ученик знать обязан. А теперь расширим наши возможности на все остальные значения. Решать, так решать!)

Итак, пусть нам надо решить вот такое тригонометрическое уравнение:

Такого значения косинуса в кратких таблицах нет. Хладнокровно игнорируем этот жуткий факт. Рисуем круг, отмечаем на оси косинусов 2/3 и рисуем соответствующие углы. Получаем вот такую картинку.

Разбираемся, для начала, с углом в первой четверти. Знать бы, чему равен икс, сразу бы ответ записали! Не знаем... Провал!? Спокойствие! Математика своих в беде не бросает! Она на этот случай придумала арккосинусы. Не в курсе? Зря. Выясните, Это много проще, чем вы думаете. По этой ссылке ни одного мудрёного заклинания насчёт "обратных тригонометрических функций" нету... Лишнее это в данной теме.

Если вы в курсе, достаточно сказать себе: "Икс - это угол, косинус которого равен 2/3". И сразу, чисто по определению арккосинуса, можно записать:

Вспоминаем про дополнительные обороты и спокойно записываем первую серию корней нашего тригонометрического уравнения:

х 1 = arccos 2/3 + 2π n, n ∈ Z

Практически автоматом записывается и вторая серия корней, для второго угла. Всё то же самое, только икс (arccos 2/3) будет с минусом:

х 2 = - arccos 2/3 + 2π n, n ∈ Z

И все дела! Это правильный ответ. Даже проще, чем с табличными значениями. Ничего вспоминать не надо.) Кстати, самые внимательные заметят, что эта картинка с решением через арккосинус ничем, в сущности, не отличается от картинки для уравнения cosx = 0,5.

Именно так! Общий принцип на то и общий! Я специально нарисовал две почти одинаковые картинки. Круг нам показывает угол х по его косинусу. Табличный это косинус, или нет - кругу неведомо. Что это за угол, π /3, или арккосинус какой - это уж нам решать.

С синусом та же песня. Например:

Вновь рисуем круг, отмечаем синус, равный 1/3, рисуем углы. Получается вот такая картина:

И опять картинка почти та же, что и для уравнения sinx = 0,5. Опять начинаем с угла в первой четверти. Чему равен икс, если его синус равен 1/3 ? Не вопрос!

Вот и готова первая пачка корней:

х 1 = arcsin 1/3 + 2π n, n ∈ Z

Разбираемся со вторым углом. В примере с табличным значением 0,5 он был равен:

π - х

Так и здесь он будет точно такой же! Только икс другой, arcsin 1/3. Ну и что!? Можно смело записывать вторую пачку корней:

х 2 = π - arcsin 1/3 + 2π n, n ∈ Z

Это совершенно правильный ответ. Хотя и выглядит не очень привычно. Зато понятно, надеюсь.)

Вот так решаются тригонометрические уравнения с помощью круга. Этот путь нагляден и понятен. Именно он спасает в тригонометрических уравнениях с отбором корней на заданном интервале, в тригонометрических неравенствах - те вообще решаются практически всегда по кругу. Короче, в любых заданиях, которые чуть сложнее стандартных.

Применим знания на практике?)

Решить тригонометрические уравнения:

Сначала попроще, прямо по этому уроку.

Теперь посложнее.

Подсказка: здесь придётся поразмышлять над кругом. Лично.)

А теперь внешне простенькие... Их ещё частными случаями называют.

sinx = 0

sinx = 1

cosx = 0

cosx = -1

Подсказка: здесь надо сообразить по кругу, где две серии ответов, а где одна... И как вместо двух серий ответов записать одну. Да так, чтобы ни один корень из бесконечного количества не потерялся!)

Ну и совсем простые):

sinx = 0,3

cosx = π

tgx = 1,2

ctgx = 3,7

Подсказка: здесь надо знать, что такое арксинус, арккосинус? Что такое арктангенс, арккотангенс? Самые простые определения. Зато вспоминать никаких табличных значений не надо!)

Ответы, разумеется, в беспорядке):

х 1 = arcsin0,3 + 2π n, n ∈ Z
х 2 = π - arcsin0,3 + 2

Не всё получается? Бывает. Прочтите урок ещё раз. Только вдумчиво (есть такое устаревшее слово...) И по ссылкам походите. Главные ссылки - про круг. Без него в тригонометрии - как дорогу переходить с завязанными глазами. Иногда получается.)

Если Вам нравится этот сайт...

Кстати, у меня есть ещё парочка интересных сайтов для Вас.)

Можно потренироваться в решении примеров и узнать свой уровень. Тестирование с мгновенной проверкой. Учимся - с интересом!)

можно познакомиться с функциями и производными.