Оптические приборы. Приборы для измерения оптических параметров и характеристик светодиодов Оптические средства измерения

Статья посвящена разработанным ООО «НТП «ТКА» приборам для измерения основных световых и энергетических параметров и характеристик источников оптического излучения, в том числе и светодиодов.

Необходимость оперативного и достоверного измерения основных световых и энергетических параметров и характеристик источников излучения в видимой области спектра, таких как координаты цветности, коррелированная цветовая температура, коэффициент пульсации, яркость, освещенность и облученность, очевидна. Она продиктована стремительным развитием альтернативных источников оптического излучения (светодиодов), появлением различных вариантов дисплеев и световых табло, а также технологическими процессами, использующими источники оптического излучения.

Некоторые особенности построения приборов для измерения основных световых характеристик источников света

Измерение освещенности и яркости является простой фотометрической процедурой. Вместе с тем при проектировании и производстве люксметров и яркомеров приходится сталкиваться с достаточно серьезными проблемами по обеспечению соответствия выпускаемых приборов требованиям нормативных документов.

Так, например, фотоприемные устройства (ФПУ), являясь основной частью прибора для измерения оптического излучения, должны отвечать ряду электрических и фотометрических требований, зависящих от области применения и назначения. При разработке и производстве приборов для измерения параметров излучения необходимо знание этих требований, их особенностей, трудностей создания и путей их преодоления.

Устройство для формирования пространственной характеристики (входное устройство) формирует угол зрения, величина которого определена назначением разрабатываемого прибора. Так, например, входное устройство люксметра или пульсметра рассчитывается исходя из следующих соображений.

Освещенность поверхности, создаваемая точечным источником излучения, произвольно расположенным под углом. к ее нормали (рис. 1), определяется выражением:

Е = Е 0 ×сosβ, (1)

где Е 0 - освещенность, создаваемая точечным источником, расположенным нормально относительно поверхности; β - угол между нормалью и направлением на источник.

Рис. 1. Произвольно расположенный источник

Очевидно, измерения прибора, измеряющего освещенность, должен подчиняться такому же закону. Практически реализовать это условие без принятия определенных мер невозможно из-за зависимости коэффициента отражения поверхности оптических элементов приемной системы от угла падения излучения, описываемой формулой Френеля (2). Для выполнения этого условия приходится включать в оптическую схему фотоприемного устройства так называемую косинусную насадку, формирующую необходимый угол зрения и компенсирующую погрешность, вносимую поверхностным отражением оптических элементов.

Наиболее оптимальная косинусная насадка для рабочих средств (рис. 2) измерения оптического излучения представляет собой выполненный из молочного стекла элемент, равномерно рассеивающий падающее излучение по всем направлениям, обеспечивая тем самым выполнение закона Ламберта, согласно которому яркости светорассеивающей поверхности во всех направлениях одинаковы.


Рис. 2. Цилиндрическая косинусная насадка для рабочих средств

Поверхность материалов, используемых во входных устройствах, отражает падающее излучение по закону Френеля:

где φ 1 - угол между падающим на поверхность лучом света и нормалью; φ 2 - угол между преломленным лучом и нормалью. Графически эта зависимость представлена на рис. 3.


Рис. 3. Зависимость коэффициента отражения поверхности материала от угла падения

Это означает, что фотоприемное устройство регистрирует излучение, не отвечающее соотношению (1) при углах более 60°, т. е. отличное от реального излучения.

Для компенсации потерь отраженного излучения используют боковую грань диска из молочного стекла. Величина потока излучения, прошедшего внутрь стекла через боковые грани, пропорциональна величине цилиндрической освещенности. Под средней цилиндрической освещенностью понимают среднюю освещенность боковой поверхности вертикально расположенного цилиндра. Она определяется выражением:

где β - угол падения света от точечного источника на боковую поверхность вертикально расположенного цилиндра.

Световой поток Ф, попадающий на используемый в ФПУ светочувствительный элемент, является функцией отражения (ρ) и пропускания (τ) используемого материала, освещенности плоской поверхности (Е п) и цилиндрической освещенности боковой грани (Е ц):

Аналитически описать эту связь достаточно сложно из-за разброса параметров используемых материалов и геометрических размеров составляющих ФПУ элементов. При разработке и изготовлении ФПУ эмпирически находится оптимальное сочетание характеристик (марки молочного стекла, его толщины и высоты боковой поверхности, выступающей над корпусом), обеспечивающее заданную погрешность (1–2%), определяемую отличием полученной пространственной характеристики от теоретической.

Кроме того, при создании приборов для измерения оптического излучения необходимо решить задачу приведения спектральной характеристики чувствительности кремниевого фотодиода к относительной световой спектральной эффективности V(λ), табулированные значения которой регламентированы решениями комиссии МКО и ГОСТ 8.332.

Спектральная коррекция чувствительности фотоприемника Sф(λ) к заданному виду S(λ) осуществляется, как правило, цветными фильтрами. При этом коэффициент пропускания Т(λ) определяется соотношением:

Существует два основных способа расположения корригирующих светофильтров перед фоточувствительным элементом (рис. 4).


Рис. 4. Способы расположения корригирующих светофильтров: а) субтрактивный; б) субтрактивно-аддитивный (схема Дреслера)

В первом случае цветные фильтры с подходящими спектральными характеристиками располагаются последовательно друг за другом. При таком расположении (рис. 4а) излучение, прежде чем попасть на фотоприемник, последовательно фильтруется в каждом фильтре.

Другой способ расположения фильтров с требуемыми спектральными характеристиками показан на рис. 4б. При этом расположении, называемом схемой Дреслера, некоторые фильтры размещаются рядом один с другим. Различные части светового потока по-разному пропускаются фильтрами, прежде чем поток достигает приемной площадки фотоприемника. Результирующая кривая спектрального пропускания комбинации может эффективно регулироваться путем изменения относительного размера отдельных компонентов. Выполненные по такому принципу корректирующие фильтры могут с высокой степенью точности приблизить относительную спектральную чувствительность фотоприемника к идеальным значениям V(λ) при относительно высоком пропускании в максимумах кривых. Обычно на практике в частности и в расчете рассматриваемых приборов используется первый способ расположения светофильтров ввиду его технологичности и простоты расчетов.

Рассмотрим пример приведения спектральной характеристики кремниевого фотодиода Sф(λ) к относительной световой спектральной эффективности V(λ) (рис. 5).


Рис. 5. Вид кривых спектральной чувствительности кремниевого фотодиода S(.) и заданной меры V(.)

Характеристика S(λ) приводится к заданной кривой с помощью исправляющего фильтра, который может быть составлен из цветных стекол (рис. 6).


Рис. 6. Коррекция спектральной чувствительности фотоприемника с помощью цветных фильтров

Общий коэффициент пропускания исправляющего светофильтра рассчитывается по формуле:

где i - номера цветных стекол, составляющих светофильтр, к i (λ) - показатель поглощения цветных стекол с индексом, соответствующим номеру цветного стекла, t i - толщина соответствующих цветных стекол.

Тип стекол и их количество выбирались полуэмпирическим способом, исходя из наличия производимых и доступных для использования марок. Так, например, для видимой области спектра пригодными для коррекции оказались следующие цветные стекла: СЗС-21, СЗС-22, СЗС-23, ЖС-20, ЖЗС-5, ЖЗС-6, ОС-5. Из группы сине-зеленых стекол (СЗС) было выбрано СЗС-21, так как оно хорошо подавляет излучение в ближней ИК-области спектра (760–1200 нм), где наблюдается максимальная чувствительность кремниевых фотодиодов (λ max = 800–900 нм), выбранных для коррекции. Оранжевое стекло ОС-5 взаимозаменяемо со стеклом ЖС-20, а желто-зеленое стекло ЖЗС-6 взаимозаменяемо со стеклом ЖЗС-5.

Выбор марки стекол и их толщины и расчет спектрального коэффициента пропускания исправляющего светофильтра осуществляется таким образом, чтобы на каждой длине волны выполнялось условие: τ(λ)= V(λ)/Sф(λ).

Строгое выполнение этого условия на всех длинах волн для серийных цветных стекол и фотоприемников практически невозможно. Всегда будет иметь место отступление реально выполненной кривой S(λ) = Sa(λ)..(λ) от заданной, которое необходимо оценить в зависимости от назначения и способа градуировки фотометра, где применяется исправляющий светофильтр.

Оценка погрешности коррекции фотоприемника производится по методике, разработанной МКО (публикация № 53). Расчет погрешности коррекции фотометрической головки f 1 (Z) основан на отличии реакции на излучение идеального фотоприемника, табулированное значение спектральной чувствительности которого известно, и реального фотоприемника, относительное спектральное распределение которого отличается от того, при котором была произведена градуировка.


где S(λ) - относительная спектральная чувствительность исследуемого фотоприемника; SV(λ) - относительная спектральная чувствительность эталонного фотоприемника; Фa(λ) - относительное спектральное распределение источника «А», при котором производится градуировка; Ф i (λ) - относительная спектральная характеристика табулированных источников.

Приборы для измерения оптического излучения

Люксметры нового поколения «ТКА-Люкс» (рис. 7) и «ТКА-ПКМ-31» являются в настоящее время самыми востребованными и имеют метрологические характеристики на уровне приборов лучших мировых производителей рабочих средств измерения. Диапазон измерения освещенности в диапазоне 10–200000 лк с погрешностью 6–8%.


Рис. 7. Внешний вид люксметра «ТКА-Люкс»

«ТКА-Люкс/Эталон» является первым российским люксметром, метрологические характеристики которого отвечают требованиям, предъявляемым к рабочим эталонам. Он предназначен для измерения освещенности в видимой области спектра 380–760 нм, создаваемой стандартными источниками оптического излучения, расположенными нормально относительно приемника. Люксметр предназначен для практической реализации Государственной поверочной схемы средств из мерений световых величин в соответствии с ГОСТ 8.023-2000. Этот прибор по точности воспроизведения и передачи размеров единиц силы света и освещенности обеспечивает метрику прецизионных и рабочих средств измерений и отличается временной стабильностью и достоверностью. Допускаемая прибором основная относительная погрешность измерения освещенности не превышает 6,0%.

Разработанный комбинированный прибор люксметр+яркомер «ТКА-ПКМ» (02) служит для измерения освещенности (в диапазоне 10–200000 лк с погрешностью 8%) и яркости накладным способом (в диапазоне 10–200 000 кд/м 2 с погрешностью 10%) самосветящихся протяженных объектов (рис. 8).


Рис. 8. Внешний вид прибора «ТКА-ПКМ» мод.0,2

Прибор отличается от традиционных яркомеров отсутствием в схеме оптических элементов (линзы, объектива), что значительно упрощает конструкцию и удешевляет стоимость прибора при сохранении его точностных характеристик.

Для дистанционного определения яркости протяженных источников разработан недорогой, отвечающий современным метрологическим и техническим требованиям прибор для измерения яркости киноэкранов яркомер «ТКАЯР» (рис. 9), представляющий собой портативный малогабаритный прибор с автономным питанием, снабженный функцией запоминания результата измерения (Hold). Наводка на измеряемый объект осуществляется с помощью лазерного прицела.


Рис. 9. Внешний вид яркомера «ТКА-ЯР»

Для упрощения конструкции прибора в оптической схеме был применен нефокусируемый объектив. Нерегулируемая фокусировка на некоторое постоянное расстояние повышает оперативность работы с прибором, так как исключается одна из рабочих операций. При этом не требуется вводить никаких поправок к градуировке, поскольку показания прибора пропорциональны яркости объекта независимо от расстояния. Прибор имеет следующие технические характеристики:

  • угол зрения - 1,0–1,5°;
  • диапазон измерения - 10,0–2000,0 кд/м2;
  • спектральная коррекция - 2,0%;
  • суммарная погрешность - 10,0%;
  • расстояние до измеряемого объекта - не менее 7,0 м.

Измерение коэффициента пульсации источников излучения

Излучение источников света при питании от сети переменного тока (как правило, с частотой 50 Гц) является пульсирующим. Частота пульсации при этом равна удвоенной частоте питающего напряжения 100 Гц. В качестве критерия оценки относительной глубины колебаний освещенности в результате изменения во времени светового потока источников излучения при питании их переменным током введен коэффициент пульсации освещенности (Кп), выражаемый формулой:

где Еmax - максимальное значение амплитуды переменой составляющей освещенности, Еmin - ее минимальное значение, Еср - среднее значение освещенности (рис. 10).


Рис. 10. Временная характеристика пульсирующей освещенности


Рис. 11. Внешний вид прибора «ТКА-ПКМ (08)»

Конструктивно прибор выполнен в виде двух блоков: фотоприемной части (ФПУ) и блока обработки информации. В блоке обработки информации размещена электронная схема, состоящая из АЦП (аналого-цифрового преобразователя), ЖКИ (жидкокристаллического индикатора) и процессора ADuС.

Прибор работает следующим образом. Сигнал с ФПУ подается на предварительный усилитель, где происходит одновременно с усилением сигнала и его масштабирование.

Усиленный сигнал подается на вход АЦП для преобразования в цифровую форму. Цифровой сигнал с выхода АЦП подается в микропроцессор для дальнейшей обработки. Проводится серия измерений с периодом 10 мс и определяются максимальное, минимальное и среднее значения освещенности.

Обработка сигнала ведется не синфазно периодам колебаний. В процессе измерения производится анализ нескольких периодов, и значения результатов выборок усредняются. Результат - значения max, min и среднее определяются в единицах освещенности лк. После нахождения параметров сигнала по формуле (8) вычисляется значение коэффициента пульсации.

Определение коэффициента пульсации источников излучения и освещенности выполняется прибором «ТКА-ПКМ (08)», информация в нем обрабатывается микропроцессором. Этот пульсметр-люксметр имеет следующие технические характеристики:

  • диапазон измерения коэффициента пульсации - 0–100%;
  • диапазон измерения освещенности - 10–200 000 лк;
  • погрешность измерения не превышает 10%.

    Измерение полного светового потока

    Важной световой характеристикой излучения светодиода является световой поток Ф (лм), определяющийся как интеграл всего потока излучения, заключенного под пространственной индикатрисой излучения (рис. 12).


    Рис. 12. Пространственное распределение силы света светильника

    Необходимо при этом отметить, что индикатрисы излучения светодиодов (в отличие от ламп накаливания) могут принимать самые причудливые формы. Эта особенность в немалой степени помогла в выборе нами пути построения измерительного прибора.

    Способы измерения полного светового потока

    Имеются два существенно различающихся способа измерения полного светового потока:

    • гониометрический метод;
    • метод «интегрирующей сферы».

    Гониометрический метод

    Метод основан на пошаговой фиксации значений силы света светодиода при его повороте на известный угол. Используемые для этих целей приборы - гониометр с достаточным угловым разрешением и фотометрическая головка с известным коэффициентом преобразования. Уменьшение погрешности измерений и получение наиболее достоверного углового распределения возможно при минимальном значении шага угла поворота светодиода относительно фотометра (или наоборот). Современные гониофотометрические установки имеют шаг несколько угловых минут. Одновременно выполняются измерения осевой силы света и ее пространственного распределения.

    На основании этих данных рассчитывается световой поток. Получение светового потока светодиода Ф с пространственным распределением силы света произвольной формы определяется с помощью индикатрис излучения большого числа плоскостей (nI v (Θ) при n→∞) и последующим вычислением среднего значения Ф:


    Процесс измерения полного светового потока гониометрическим методом является перспективным с точки зрения точности и информативности, но требует серьезных материальных затрат и времени.

    Для оперативного проведения простых технологических измерений полного светового потока нами был выбран так называемый метод «интегрирующей сферы», изложенный М. М. Гуревичем . В нем неизвестный световой поток сопоставляется с заранее вычисленным световым потоком образцового осесимметричного источника. Этот метод позволяет проводить измерения светового потока источника с произвольным распределением излучения в окружающем пространстве на порядки быстрее, чем гониометрический метод (рис. 13).


    Рис.13. Измерение светового потока с помощью фотометрического шара

    Такое сопоставление производится с помощью фотометрического шара, имеющего достаточно большой диаметр, окрашенного изнутри матовой белой краской и рассеивающего свет в соответствии с законом Ламберта.

    Теория фотометрического шара показывает, что световой поток, рассеиваемый его внутренней стенкой, распределяется по ней весьма равномерно. Поэтому если внутрь полой сферы, стенка которой имеет во всех точках одинаковый коэффициент отражения ρ, поместить источник S, излучающий световой поток Ф, то отраженный от стенки шара поток ρФ создаст во всех точках одну и ту же освещенность

    где r - радиус поверхности шара.

    Вторично отраженный световой поток ρ 2 Ф снова равномерно распределится по стенке шара, и дополнительная освещенность окажется:

    Общую (суммарную) освещенность в некоторой точке М на внутренней поверхности шара можно рассчитать следующим образом:

    где E и - освещенность в некоторой точке М при непосредственном падении света на поверхность шара. Очевидно, что эта величина не будет одинакова во всех точках, поскольку зависит как от положения источника S внутри шара, так и от его светораспределения.

    Однако если с помощью малого непрозрачного экрана Э (рис. 13), помещенного вовнутрь шара, защитить от попадания света непосредственно от источника малый участок стенки около точки М, то освещенность этого участка будет следующая:

    где α - коэффициент пропорциональности, зависящий только от свойств шара.

    Поэтому если испытуемый источник S со световым потоком Ф заменить внутри шара на образцовый источник S 0 c известным световым потоком Ф 0 , то очевидно, что освещенность в точке М будет:

    Или, разделив выражение (14) на (15), получим:


    Рис. 14. Вариант измерения полного светового потока светодиода

    Установив тем или другим способом отношение освещенностей, можно определить световой поток Ф интересующего нас источника.

    В связи с тем, что излучение светодиодов направленное, и угол излучения не превышает 2. возможно упрощение конструкции прибора за счет установки исследуемых светодиодов в стенке шара. Тем самым снижается количество элементов конструкции внутри шара и, следовательно, его геометрические размеры. Шар выполняется с двумя отверстиями. За первым размещается фотодиод с молочным стеклом и набором корригирующих светофильтров, а за вторым - исследуемые светодиоды (рис. 14).

    Определив реакцию фотодиода на излучение - например, фототоки, возникающие в измерительной цепи, - находим отношение i/i 0 и Е/Е 0 , которые можно считать равными между собой, и вычисляем световой поток Ф согласно выражению (16).

    В результате реализации на практике вышеизложенного метода мы получили рабочее средство измерения полного потока, показанного на рис. 15. Погрешность измерения полного светового потока белых светодиодов составила 7,0%, цветных светодиодов - 10,0%.


    Рис. 15. Внешний вид опытного экземпляра прибора «ТКА-КК» для измерения полного светового потока излучающего светодиода


    Рис. 16. Фотоприемное устройство (ФПУ) спектроколориметра

    Дополнительные погрешности суммарной спектральной коррекции, возникающие из-за селективности коэффициента отражения интегрирующей сферы, достаточно просто устраняются коррегирующими фильтрами. Измерения полного светового потока могут проводиться за считанные секунды операторами любого уровня квалификации (рис. 15).

    Измерение цветовых характеристик источников оптического излучения

    Общая концепция построения приборов

    Приборы ООО «НТП «ТКА» для определения цветовых характеристик источников (спектроколориметры) основаны на измерении спектрального состава оптического излучения с последующей математической обработкой результатов.

    Координаты цвета источников определяются значениями трех интегралов, взятых в пределах видимого спектра:


    где Ф еλ (λ) - спектральная плотность потока излучения; x‾(λ),y‾(λ),z‾(λ) - удельные координаты цветности.

    Координаты цветности рассчитываются:


    Фотоприемное устройство спектроколориметра показано на рис. 16.

    Излучение исследуемого источника, пройдя отделение для формирования пространственной характеристики (1), попадает в диспергирующее устройство. Устройство представляет собой полихроматор (2) с регистрацией разложенного излучения фотодиодной линейкой (3). Рабочий спектральный диапазон обусловлен характером поставленных задач.

    При определении коррелированной цветовой температуры спектральная плотность энергетической светимости М еλ (Вт·м3) абсолютно черного тела (АЧТ) определяется в соответствии с законом Планка по формуле:

    Координаты цвета АЧТ при данной температуре Т рассчитываются по формулам (17). Затем применяется переход от системы цветовых координат х, у МКО 1931 г. в более равноконтрастную систему u’, v’ МКО 1976 г. по следующим формулам:

    Такой же пересчет цветности производится для исследуемого источника излучения. Затем определяется массив координат цветности АЧТ и соответствующий массив температур.

    Минимальное расстояние в пространстве u, v между точкой цветности исследуемого источника (u0’, v0’) и точками цветности массива линии АЧТ (ui’, vi’) (рис. 17) определяется по формуле:


    Рис. 17. Линия АЧТ в системе цветовых координат u’,v’

    Затем сопоставляется рассчитанный массив цветности и массив температур АЧТ и определяется температура исследуемого источника Тj, соответствующая определенной точке цветности (u j , v j).

    Разработанный спектроколориметр «ТКА-ВД» предназначен для определения спектрального состава источника оптического излучения с последующим вычислением цветовых координат в выбранной системе координат (рис. 18). Оптическая схема прибора представляет собой полихроматор на дифракционной решетке с регистрацией разложенного излучения фотодиодной линейкой. Рабочий спектральный диапазон прибора (380–760) нм. Диапазон линейности сигналов достигает шести порядков. В зависимости от конфигурации входного устройства прибор работает как в режиме яркомера, так и в режиме измерения освещенности. Спектральное разрешение прибора не превышает 3 нм.


    Рис. 18. Внешний вид спектроколориметра «ТКА-ВД»

    Заключение

    В заключение хочется отметить следующее. Прибор становится измерительным средством тогда, когда он метрологически обеспечен. Порой на метрологию затрачиваются усилия, соизмеримые с усилиями, затраченными на разработку самого прибора. ООО «НТП «ТКА» оснащено современным, в том числе уникальным оборудованием, которое обеспечивает проведение калибровочных и поверочных (силами «Тест-Санкт-Петербург») работ при выпуске приборов серии «ТКА». По каждому типу приборов имеется утвержденное метрологическое обеспечение измерений и эталоны соответствующего уровня, госповерка которых ежегодно проводится в уполномоченных организациях Госстандарта РФ. Специалистами центра проводятся консультации по вопросам возможности применения приборов для решения конкретных задач и даются рекомендации по наилучшему выбору среди них. По заданию министерств, ведомств и отдельных заказчиков выполняются научно-исследовательские и опытно-конструкторские работы, связанные как с разработкой новых типов приборов, так и с исследованиями воздействия физических факторов на материальные объекты и изучением происходящих в связи с этим изменений.

    Литература

    1. www.ledcommunity.ru (Сайт объединения людей, сфера деятельности которых связана со светодиодной индустрией.)
    2. Заутер Г., Линдеманн М., Шперлинг А., Оно О. Фотометрия светодиодов // Светотехника. 2004. № 3.
    3. Никифоров С. Измерительная лаборатория для комплексного исследования характеристик светодиодов, применяемых в системах отображения информации // Компоненты и технологии. 2007. № 7.
    4. Круглов О. В., Кузьмин В. Н., Томский К. А. Измерение светового потока светодиодов // Светотехника. 2009. № 3.
    5. Сапожников Р. А. Теоретическая фотометрия. Л.: Энергия. 1977.
    6. Гуревич М. М. Фотометрия (теория, методы и приборы). Л.: Энергоатомиздат. 1983.

  • К атегория:

    Слесарно-инструментальные работы

    Оптические измерительные приборы

    В конструкции измерительной машины кроме трубки оптиметра, в которой использован принцип оптического рычага, также находят применение и другие оптические устройства, лежащие в основе конструкций ряда оптических измерительных приборов. Такие приборы получили название оптических измерительных приборов.

    Оптические измерительные приборы построены на принципе исследования человеческим глазом увеличенного теневого изображения измеряемого предмета. К числу таких измерительных приборов относятся, широко применяемые в инструментальном производстве, инструментальный и универсальный микроскопы и проекторы.

    Инструментальный микроскоп модели ИТ служит для измерения сложных профилей инструмента. Он состоит из оптической головки, передвигаемой вверх и вниз по стойке, стола с салазками, перемещаемых на шариках в продольном и поперечном направлениях, основания и осветительного приспособления. Стойка может при необходимости повертываться вокруг горизонтальной оси. Грубая установка оптической головки по высоте производится от руки, точная - винтом, а ее закрепление в установленном положении - винтом. Два микрометрических устройства служат для отсчета поперечного и продольного перемещения стола. Видимая на столе микроскопа рамка с центрами предназначена для закрепления деталей.

    Принцип работы инструментального микроскопа состоит в следующем. От источника света лучи идут сквозь специальное устройство, называемое диафрагмой и регулирующее количество проходящего света. Отражаясь в зеркале, они проходят прозрачную пластинку мимо расположенного на столе изменяемого предмета и следуют дальше в объектив, увеличиваю-м размеры рассматриваемого контура. В дальнейшем, четыре раза преломляясь в трех призмах, лучи выходят перпендикулярно к матозому стеклянному экрану, на котором нанесены темные штрихи, и становятся видными в окуляре. В окуляре можно видеть освещенный контур измеряемого предмета, увеличенный в 30 раз.

    Рис. 1. Инструментальный микроскоп.

    На штриховом экране для сравнения с профилем измеряемого предмета нанесены различные профили, линии и шкалы как линейные, так и угловые. Поворачивая экран вокруг оси его вращения, можно совмещать линии этого экрана с отдельными частями профиля предмета и отсчитывать углы поворота экрана, а следовательно, размеры и углы измеряемого предмета.

    Процесс измерения на описываемом приборе состоит из следующих операций:
    а) установка предмета до совпадения измеряемой части профиля с определенной линией или профилем экрана;
    б) перемещение предмета или экрана до совпадения второй части профиля с той же линией или профилем на экране;
    в) отсчет по экрану или микрометрическим устройством произведенного перемещения предмета от одной линии экрана до другой.

    При измерении углов весь процесс осуществляется с помощью оптической головки микроскопа, а при измерении длины роль оптической головки ограничивается только контролем точности установки детали и перенесением размеров; отсчет производится по микрометрическим устройствам.

    Рис. 2. Оптическая схема микроскопа.

    Микроскоп имеет сменные объективы с увеличением в десять, пятнадцать и тридцать раз. Его штриховые экраны также сменные.

    Микроскоп имеет и специальный экран для измерения резьб, а также угломерный экран.

    Рис. 3. Угломерный экран: а - общий вид: б - поле зрения бокового микроскопа А и окуляра.

    В средней части угломерного экрана расположены две взаимноперпендикулярные риски, с которыми может совмещаться контур измеряемого предмета. По всей окружности экрана нанесена угловая шкала от 0 до 360° с делениями через каждый градус. Шкала рассматривается через боковой микроскоп А, в котором кроме градусной шкалы видны деления с интервалом в две минуты. Шкала бокового микроскопа с отсчетом 121°38’ показана на рис. 3, б.

    Точность проверки угловых величин на инструментальном микроскопе составляет + 1-2’, а линейных измерений + 0,005 мм. Чтобы обеспечить необходимую точность, нужно получить максимальную резкость изображения. Это достигается соответствующей регулировкой диафрагмы и правильной установкой оптической головки по высоте.

    Универсальный измерительный микроскоп (типа УИМ -21) представляет собой комбинацию инструментального микроскопа и оптической измерительной машины. Он дает возможность проверять детали значительных диаметров и длины (размеры 200 X ЮО) и точнее определять линейные размеры с помощью оптических устройств. Линейная точность отсчета на его шкалах составляет 0,001 мм, угловая Г.

    Универсальный микроскоп состоит из станины с вертикальной -тойкой для закрепления головки, снабженной штриховыми и угломерными экранами, стола, перемещающегося в поперечном направлении, каретки с центровыми бабками, передвигаемой в продольном направлении, оптических устройств, фиксирующих величину перемещения каретки и стола, и наконец, осветительного устройства.

    Рис. 4. Отсчет

    Рис. 5. Отсчет линеиных перемещении в универсальном микроскопе.

    Высокая точность линейных перемещений стола и каретки гарантируется двумя микроскопами, установленными на станине прибора. В окуляре любого из них глаз видит изображение, показанное в окружности на рис. 4. Это изображение есть результат одновременного рассматривания через окуляр подвижной и неподвижной пластинок, установленных в микроскопе, и шкалы, находящейся на каретке или столе микроскопа. Пластинки и шкала изготовлены из стекла и освещены снизу электрической лампочкой.

    Во время передвижения стола шкала с делениями перемещается вместе со столом и кареткой и дает возможность отсчитывать величину передвижения в миллиметрах. Перемещение в десятых долях миллиметра отсчитывается по делениям стеклянной неподвижной пластинки, установленной в микроскопе. Отсчет сотых и тысячных Долей производится по шкале подвижной пластинки. Для этой цели поворотом подвижной пластинки устанавливают одну из пар спиральных линий так, чтобы миллиметровое деление, видимое на 8* рис. 56, оказалось по середине между рисками этой пары спиральных линий. Сумма показаний шкал, т. е. количество миллиметров, видимых на фоне спиральных линий, количество десятых долей на поперечном указателе неподвижной пластинки и сотые, и тысячные, приходящиеся против этого поперечного указателя, дадут точное положение стола или каретки по отношению к оси микроскопа.

    лов и линейных размеров и устроены так же, как, устроен угломерный экран инструментального микроскопа. Вторые окуляр и экран служат для определения правильности углов профиля, высоты, притуплений и закруглений у резьбы. Этот

    экран представляет собой стеклянный диск с профилями резьбы различных систем и шагов. Совмещая профили экрана с теневым изображением исследуемой под микроскопом резьбы, оценивают правильность ее выполнения.

    Проекторами называют оптические измерительные приборы, дающие увеличенное изображение профиля исследуемого предмета на экране. Эти приборы очень производительны и характеризуются точностью отсчета до 5 мк, а увеличение измеряемого профиля в приборах составляет 10, 20 и 50, в зависимости от силы сменного объектива.

    Большой проектор модели БП, схема работы которого показана на фигуре, состоит из проектирующего устройства, объектива зеркала и экрана. Источник света, помещенный в проектирующем устройстве, посылает лучи света, которые попадают на край детали и частично задерживаются. Прошедшие же контур детали лучи попадают в объектив и идут дальше на отражательное,устройство (зеркало), а затем попадают на экран, где и образуют увеличенное теневое изображение контура проверяемого предмета, видимое иа светлом фоне. Теневое изображение может быть сравнено с вычерченным на прозрачной бумаге или экране изображением того контура, который следует выполнить у детали. Результаты измерения могут быть получены не только в виде тени, но и в виде чисел. Для этой цели экран снабжается двумя взаимноперпендику-лярными рисками, а стол - микрометрическими, поворотными устройствами и соответствующими нониусами.

    Рис. 6. Схема действия проектора.

    При работе на проекторе следует учитывать, что слишком большое увеличение, хотя и дает большую точность, все же ослабляет резкость изображения. Поэтому здесь выбирают такое увеличение, которое позволит четко наблюдать профиль измеряемого предмета.


    Из их числа наиболее распространены оптиметры вертикальные и горизонтальные. Эти приборы используют для относительных измерений с применением блоков концевых мер длины.

    Измерительное устройство - трубка оптиметра, основанная на сочетании принципа автоколлимации с качающимся зеркалом.

    В основу принципа автоколлимации положено свойство объектива превращать пучок расходящихся лучей в пучок параллельных лучей, а затем собирать этот пучок, отраженный плоским зеркалом, в том же фокусе объектива.

    Рис. 6.12. Ход лучей в оптической системе: а - при расположении на главной оптической оси; б - при смещении источника света относительно главной оптической оси; в - при отражении от плоскости зеркала, расположенного под углом

    Если источник света О (рис. 6.12, а) находится в фокусе объектива, то луч, совпадающий с главной оптической осью, пройдет объектив без преломления, а остальные лучи после преломления в объективе пройдут параллельно главной оптической оси. Встретив на пути зеркальную плоскость, перпендикулярную к главной оптической оси, лучи отразятся от нее и вновь соберутся в фокусе объектива О.

    Если источник света О расположен не в фокусе объектива, а в фокальной плоскости на расстоянии а от главной оптической оси (рис. 6.12, б ), то параллельные лучи, выйдя из объектива и встретив на своем пути зеркало, расположенное под углом 90° к главной оптической оси, отразятся от него под углом у к этой оси, пройдут через объектив и сойдутся в точке О", симметричной точке О.

    Если же источник света расположен в фокусе объектива, но зеркальная плоскость находится под углом а к главной оптической оси (рис. 6.12, в), то лучи, отразившись, пройдут под углом 2сх к главной оптической оси и, преломившись в объективе, сойдутся в точке Оотстоящей от точки О на расстоянии t = Ftg2a.

    В конструкции трубки оптиметра используют все описанные схемы.

    Рис. 6.13.

    • 1 - шкала; 2 - призма; 3 - зеркало; 4 - призма; 5 - объектив;
    • 6 - зеркало; 7 - неподвижная опора; 8 - измерительный стержень

    Оптическая схема трубки оптиметра показана на рис. 6.13.

    Лучи света от источника направляются осветительным зеркалом 3 и призмой 2 на шкалу 1, на которой нанесено ±100 делений с интервалом с = 0,08 мм, расположенную в общей фокальной плоскости объектива 5 и окуляра. Пройдя через шкалу, лучи попадают в призму 4 и, преломившись под углом 90°, проходят через объектив 5. Выйдя из объектива параллельным пучком, лучи отразятся от зеркала 6 и возвратятся в фокальную плоскость объектива со смещением в горизонтальном направлении относительно главной оптической оси. Горизонтальное смещение используют для того, чтобы наблюдать изображение шкалы отдельно от самой шкалы. Зеркало 6 имеет три точки опоры: две неподвижные 7 и одну подвижную - измерительный стержень 8.

    Перемещение измерительного стержня 8 на величину S вызовет поворот зеркала 6 на угол а, что повлечет за собой поворот отраженных от зеркала лучей на угол 2а. При этом изображение шкалы в общем случае переместится в вертикальном направлении относительно неподвижного индекса на величину t. В оптиметре используется оптический рычаг, малым плечом которого является расстояние а от точки опоры качающего зеркала 6 до оси измерительного стержня 8, большим - фокусное расстояние объектива F. Особенность оптического рычага - передаточное отношение равно удвоенному отношению его плеч:

    где S - перемещение измерительного стержня, равное atgcx.

    У оптиметра F = 200 мм и плечо а = 5 мм. Если принять из-за малости углов tg2a = и tga = а, то

    т.е. при перемещении измерительного стержня на 1 мкм изображение шкалы переместится на интервал деления (с = 80). Величина k = 80 - собственное передаточное отношение рычажно-оптической системы оптиметра. Общее передаточное отношение оптиметра при 12-крат- ном увеличении окуляра

    Предназначен для измерения линейных и угловых размеров методом непосредственной оценки.

    В современной практике измерения чаще всего применяют микроскоп малой модели типа ИТ и большой модели БМИ.


    Рис. 6.14.

    • 1 - основание; 2 - микрометрический винт поперечного перемещения; 3 - винт поворота стола; 4 - рамка с центрами; 5 - центр; 6 - тубус;
    • 7 - съемная окулярная головка; 8 - винт (маховичок); 9 - колонка; 10 - стопорный винт; 11 - ось вращения колонки; 12 - осветительное устройство; 13 - винт наклона колонки; 14 - микрометрический винт продольного перемещения; 15 - стол; 16 - рукоятка

    Видимый интервал деления с" собственно составит 960 мкм. Следовательно, цена деления оптиметра

    Инструментальный микроскоп малой модели (рис. 6.14) состоит из основания прибора 1, колонки 9, съемной окулярной головки 7, тубуса 6, передвигающегося вверх и вниз по колонке 9, стола 15, имеющего поперечное и продольное перемещение с помощью микрометрических винтов 2 и 14 соответственно и осветительного устройства 12.

    Колонка 9 может поворачиваться вокруг горизонтальной оси 11 с помощью винтов 13, отклоняясь от вертикального положения в обе стороны на 10°. Грубое перемещение тубуса по колонке проводится от руки. Он фиксируется в любом положении стопорным винтом 10. Для точной установки по высоте служит маховичок 8.

    Продольное и поперечное перемещение стола отсчитывают по шкалам микрометрического винта, аналогичного микрометру. Предел измерения по микровинтам - 25 мм. Предел измерения в продольном направлении можно увеличить, перемещая стол рукояткой 16, дополнительно на 50 мм за счет блока концевых мер, устанавливаемого между специальными упорами. Пределы измерения по угловой шкале 0-360°.

    На столе микроскопа помещается рамка 4 с центрами 5 для установки цилиндрических деталей с центровыми отверстиями. Для измерения бесцентровых деталей рамка снимается, и тогда применяется V-образная призма. Плоские детали устанавливают непосредственно на столе, который может в незначительных пределах поворачиваться вокруг оси винтом 3 в основном при настройке прибора.

    В инструментальном микроскопе применяется съемная универсальная окулярная головка 7, имеющая два окуляра - визуальный Б и отсчета угловых величин А. В окуляре Б наблюдаются изображение теневого контура измеряемого объекта и штриховая сетка, нанесенная на стеклянном диске, который вращается при помощи специального маховика. Угол поворота штриховой сетки отсчитывается по шкалам (видимым в окуляре А): подвижной градусной и неподвижной минутной с ценой деления 1 минута.

    Интерферометры, основанные на использовании явления интерференции световых волн, подразделяют на контактные и бесконтактные, вертикальные и горизонтальные.

    Контактные интерферометры выпускают с переменной ценой деления от 0,05 до 0,2 мкм. Перед измерением прибор настраивают на цену деления г. Для этого задают цену деления произвольным количеством полос К в монохроматическом свете и определяют количество делений шкалы т, в которые надо уложить К полос, чтобы получить заданную цену деления. Рекомендуется при цене деления 0,05; 0,1 и 0,2 мкм выбирать число К = 8; 16 и 32 соответственно:

    где X - длина световой волны (обычно замаркирована на интерферометре).

    Применяют интерферометры в основном для поверки концевых мер и для точных измерений.

    Рис. 6.15.

    • 1 - лампа; 2 - конденсор; 3 - диафрагма; 4 - светофильтр;
    • 5 - зеркало; 6 - пластина; 7 - объектив; 8 - полость сетки;
    • 9 и 10 - окуляр; 11 - компесатор; 12 - зеркало

    Оптическая схема трубки интерферометра показана на рис. 6.15. Свет от лампы 1 направляют конденсором 2 через диафрагму 3 на полупрозрачную разделительную пластину 6. Часть света пройдет через пластину 6, компенсатор 11 на зеркало 12 и, отразившись от зеркала, вернется снова на пластину 6. Другая часть пучка света направится на зеркало 5 и после отражения тоже возвратится к пластине. Встретившись на пластине 6, обе части пучка света интерферируют при небольшой разности хода. Объектив 7 проецирует в полость сетки 8 интерференционные полосы, которые вместе с нанесенной на сетке шкалой наблюдаются через систему окуляра 9 и 10. При включении светофильтра 4 наблюдается интерференционная картина, черная полоса которой служит указателем при отсчете по шкале.

    В способе бесконтактного оптического измерения размещают объект между источником лазерного излучения и фотоприемником, измеряют мощность лазерного излучения Р, сравнивают ее с заданным уровнем Р 0 , осуществляют оптическую развертку лазерного излучения в пучок параллельных лучей в зоне нахождения объекта и определяют размер объекта по величине тени от объекта на фотоприемнике, корректируя время экспозиции фотоприемника по величине разности (Р 0 -Р). Устройство для осуществления способа включает лазер, светоделительную пластину, короткофокусную цилиндрическую линзу, выходную цилиндрическую линзу, коллимирующую линзу, ПЗС, блок обработки информации, фотоприемное пороговое устройство. Технический результат - повышение точности измерений. 2 н. и 2 з.п. ф-лы, 1 ил.

    Рисунки к патенту РФ 2262660

    Изобретение относится к измерительной технике, в частности к бесконтактным оптическим средствам измерения геометрических размеров различных объектов.

    Известен способ бесконтактного оптического измерения размеров объектов, называемый также теневым, который заключается в размещении исследуемого объекта между лазером и многоэлементным фотоприемником, развертке лазерного излучения в пучок параллельных лучей в зоне расположения объекта и определении размера объекта по величине тени, отбрасываемой им на фотоприемник. Устройства, реализующие известный способ, - лазерные теневые измерители - состоят из источника лазерного излучения, системы линз, формирующей из первоначального луча путем оптической развертки пучок параллельных лучей, и многоэлементного фотоприемника, подключенного к блоку обработки информации. Количество незасвеченных пикселов на фотоприемнике на линейке ПЗС определяет размер объекта (1, 2).

    Использование оптической развертки позволяет применить для непрерывного считывания информации многоэлементный фотоприемник на линейке ПЗС и осуществить съем информации в течение одного кадра, длительность которого регулируется в широких пределах, вплоть до 0,1 мкс. Это обстоятельство дает возможность использовать лазерные теневые измерители для измерения параметров объектов, движущихся с большой скоростью.

    В качестве прототипа заявляемого технического решения выбран способ бесконтактного оптического измерения размеров объектов, заключающийся в размещении исследуемого объекта между лазером и фотоприемником, оптической развертке лазерного излучения в пучок параллельных лучей в зоне расположения объекта и определении размера объекта по величине тени от объекта на фотоприемнике. Устройство, реализующее известный способ, состоит из источника лазерного излучения, линзовой системы оптической развертки, многоэлементной фотодиодной линейки, схемы обработки информации и компьютера (3).

    Недостатки известного способа и устройства, с помощью которого реализуется способ, обусловлены следующим. Точность измерения при использовании известного способа зависит, прежде всего, от точности определения границ контура исследуемого объекта. Дифракционные эффекты приводят к тому, что переход от света к тени на поверхности фотоприемника характеризуется определенной протяженностью, которая для используемых на практике фотоприемников на линейке ПЗС составляет, как правило, несколько пикселов. Размытость границы между светом и тенью снижает точность определения размеров объекта, причем влияние этого фактора будет тем больше, чем меньше размер объекта.

    Как было показано выше, размер объекта определяется количеством незасвеченных (затемненных) пикселов на линейке ПЗС. Затемненным считается пиксел, видеосигнал с которого меньше определенного порога.

    Можно показать, что размер детали будет определяться количеством пикселов, на которых напряжение U t больше порогового U пор

    где Е max - максимальная мощность лазерного излучения;

    r - текущий радиус лазерного пучка на линейке ПЗС;

    r о - радиус лазерного пучка в точке с плотностью мощности излучения в е 2 раз меньшей, по сравнению с интенсивностью в центре;

    Т экс - время экспозиции;

    RC - параметр, характерный для конкретной линейки ПЗС.

    Из выражения (1) следует, что размер объекта зависит как от мощности лазерного излучения, так и от времени экспозиции.

    За время экспозиции число пикселов, на которых U t U пор, будет определяться мощностью лазерного излучения, так как освещенность каждого пиксела и, следовательно, скорость нарастания заряда на нем зависит от мощности лазерного излучения. Как следствие, определяемый размер объекта будет зависеть от величины мощности лазерного излучения. Поэтому в известном лазерном измерителе при флуктуациях мощности точность определения размера объекта снижается.

    Задача, решаемая изобретением, - повышение точности измерений.

    Указанная задача решается тем, что в способе бесконтактного оптического измерения размеров объектов, заключающемся в размещении объекта между источником лазерного излучения и фотоприемником, оптической развертке лазерного излучения в пучок параллельных лучей в зоне расположения объекта и определении размера объекта по величине тени от объекта на фотоприемнике, измеряют мощность лазерного излучения Р, сравнивают ее с заданным уровнем Р о и по величине (Р о -Р) осуществляют корректировку времени экспозиции фотоприемника. Устройство для осуществления способа, содержащее источник лазерного луча, средства оптической развертки лазерного луча, фотоприемник, подключенный к первому входу блока обработки информации, и объект, расположенный между источником лазерного луча и фотоприемником, снабжено светоделителем, размещенным между источником лазерного луча и средствами оптической развертки, и фотоприемным пороговым устройством, выход которого подсоединен ко второму входу блока обработки информации. Средства оптической развертки лазерного луча выполнены в виде цилиндрических линз, а светоделитель - в виде полупрозрачной пластины.

    Изобретение иллюстрируется чертежом, где схематически изображено устройство, с помощью которого реализуется заявляемый способ. Оно включает лазер 1, светоделительную полупрозрачную пластину 2, средства оптической развертки лазерного луча, состоящие из короткофокусной цилиндрической линзы 3 и выходной цилиндрической линзы 4, коллимирующую линзу 5, фотоприемник на линейке ПЗС 6, соединенный с первым входом блока обработки информации 7, и фотоприемное пороговое устройство 8, подключенное ко второму входу блока 7 и представляющее собой фотоприемник со схемой сравнения. Светоделительная пластина 2 и фотоприемное пороговое устройство 8 образуют канал корректировки времени экспозиции. Светоделительная пластина 2 расположена под углом к траектории луча лазера 1 для того, чтобы обеспечить отвод части мощности излучения на фотоприемное пороговое устройство 8. Измеряемый объект 9 размещается между линзами 4 и 5.

    Заявляемый способ осуществляется следующим образом. Излучение лазера 1 попадает на светоделительную пластину 2. Часть излучения отклоняется пластиной 2 на фотоприемное пороговое устройство 8, а остальная часть проходит в оптическую систему линз 3 и 4, осуществляющих развертку излучения в пучок параллельных лучей. В результате исследуемый объект 9 засвечивается плоским лучом и на фотоприемнике 6 формируется изображение объекта, соответствующее тени, отбрасываемой объектом 9 на поверхность фотоприемника 6. В блоке 7 происходит обработка сигнала изображения и определение размера объекта 9. В пороговом устройстве 8 осуществляется сравнение части мощности лазерного излучения, поступившей на устройство 8, с пороговой величиной, соответствующей заданной мощности излучения. Если величина мощности отлична от заданной, на выходе порогового устройства 8 будет формироваться разностный сигнал, поступающий на второй вход блока 7. В соответствии с величиной поступившего сигнала блок 7 осуществляет корректировку времени экспозиции фотоприемника 6. Если фактическая мощность лазерного излучения больше заданной, блок 7 уменьшает время экспозиции, если меньше - увеличивает.

    Как следствие, регулировка времени заряда пикселов даже в условиях флуктуации мощности лазерного излучения обеспечивает высокую точность измерений.

    Таким образом, заявляемые способ и устройство за счет корректировки времени экспозиции в зависимости от мощности лазерного излучения обеспечивают - по сравнению с устройством-прототипом - повышение точности измерения размеров объектов.

    ЛИТЕРАТУРА

    1. А.З.Венедиктов, В.Н.Демкин, Д.С.Доков, А.В.Комаров. Применение лазерных методов для контроля параметров автосцепки и пружин. Новые технологии - железнодорожному транспорту. Сборник научных статей с международным участием, часть 4. Омск 2000, с.232-233.

    2. V.N.Demrin, D.S.Dokov, V.N.Tereshkin, A.Z.Venediktov. Optical control of geometrical dimensions for railway cars automatic coupling. Third Internat. Workshop on New Approaches to High-Tech: Nondestructive Testing and Computer Simulations in Science and Engineering. Proceedings of SPAS, Vol. 3. 7-11 June 1999, St. Petersburg, p. А17.

    3. В.В.Анциферов, М.В.Муравьев. Бесконтактный лазерный измеритель геометрических размеров роликов подшипников. Новые технологии - железнодорожному транспорту. Сборник научных статей с международным участием, часть 4. Омск 2000, с.210-213 (прототип).

    ФОРМУЛА ИЗОБРЕТЕНИЯ

    1. Способ бесконтактного измерения размеров объектов, заключающийся в размещении объекта между источником лазерного излучения и фотоприемником, оптической развертке лазерного излучения в пучок параллельных лучей в зоне расположения объекта, и определении размера объекта по величине тени от объекта на фотоприемнике, отличающийся тем, что измеряют мощность лазерного излучения Р, сравнивают ее с заданным уровнем Р о и по величине (Р о -Р) осуществляют корректировку времени экспозиции фотоприемника.

    2. Устройство для бесконтактного оптического измерения размеров объектов, содержащее источник лазерного луча, средства оптической развертки лазерного луча, фотоприемник, подключенный к первому входу блока обработки информации, и объект, расположенный между средствами оптической развертки лазерного луча и фотоприемником, отличающееся тем, что оно снабжено светоделителем, размещенным между источником оптического излучения и средствами оптической развертки и оптически связанным с фотоприемным пороговым устройством, выход которого подсоединен ко второму входу блока обработки информации.

    3. Устройство по п.2, отличающееся тем, что средства оптической развертки лазерного луча выполнены в виде цилиндрических линз.

    4. Устройство по п.2, отличающееся тем, что светоделитель выполнен в виде полупрозрачной пластины.


    Оптический измерительный прибор в машиностроении, средство измерения, в котором визирование (совмещение границ контролируемого размера с визирной линией, перекрестием и т.п.) или определение размера осуществляется с помощью устройства с оптическим принципом действия. Различают три группы Оптический измерительный прибор: приборы с оптическим способом визирования и механическим (или др., но не оптическим) способом отсчёта перемещения; приборы с оптическим способом визирования и отсчёта перемещения; приборы, имеющие механический контакт с измеряемым объектом, с оптическим способом определения перемещения точек контакта.

    Из приборов первой группы распространение получили проекторы для измерения и контроля деталей, имеющих сложный контур, небольшие размеры (например, шаблоны, детали часового механизма и т.п.). В машиностроении применяются проекторы с увеличением 10, 20, 50, 100 и 200, имеющие размер экрана от 350 до 800 мм по диаметру или по одной из сторон. Т. н. проекционные насадки устанавливают на микроскопах, металлообрабатывающих станках, различных приборах. Инструментальные микроскопы (рис. 1) наиболее часто используют для измерения параметров резьбы. Большие модели инструментальных микроскопов обычно снабжаются проекционным экраном или бинокулярной головкой для удобства визирования.

    Наиболее распространённый прибор второй группы - универсальный измерительный микроскоп УИМ, в котором измеряемая деталь перемещается на продольной каретке, а головной микроскоп - на поперечной. Визирование границ проверяемых поверхностей осуществляется с помощью головного микроскопа, контролируемый размер (величина перемещения детали) определяется по шкале обычно с помощью отсчётных микроскопов. В некоторых моделях УИМ применено проекционно-отсчётное устройство. К этой же группе приборов относится компаратор интерференционный.

    Приборы третьей группы применяют для сравнения измеряемых линейных величин с мерами или шкалами. Их объединяют обычно под общим назв. компараторы. К этой группе приборов относятся оптиметр, оптикатор, измерительная машина, контактный интерферометр, оптический длиномер и др. В контактном интерферометре (разработан впервые И. Т. Уверским в 1947 на заводе «Калибр» в Москве) используется интерферометр Майкельсона (см. в ст. Интерферометр), подвижное зеркало которого жестко связано с измерительным стержнем. Перемещение стержня при измерении вызывает пропорциональное перемещение интерференционные полос, которое отсчитывается по шкале. Эти приборы (горизонтального и вертикального типа) наиболее часто применяют для относительных измерений длин концевых мер при их аттестации. В оптическом длиномере (длиномер Аббе) вместе с измерительным стержнем (рис. 2) перемещается отсчётная шкала. При измерении абсолютным методом размер, равный перемещению шкалы, определяется через окуляр или на проекционном устройстве с помощью нониуса.