Противоположные стороны параллелограмма. Параллелограмм в задачах

Видеокурс «Получи пятерку» включает все темы, необходимые для успешной сдачи ЕГЭ по математике на 60-65 баллов. Полностью все задачи 1-13 Профильного ЕГЭ по математике. Подходит также для сдачи Базового ЕГЭ по математике. Если вы хотите сдать ЕГЭ на 90-100 баллов, вам надо решать часть 1 за 30 минут и без ошибок!

Курс подготовки к ЕГЭ для 10-11 класса, а также для преподавателей. Все необходимое, чтобы решить часть 1 ЕГЭ по математике (первые 12 задач) и задачу 13 (тригонометрия). А это более 70 баллов на ЕГЭ, и без них не обойтись ни стобалльнику, ни гуманитарию.

Вся необходимая теория. Быстрые способы решения, ловушки и секреты ЕГЭ. Разобраны все актуальные задания части 1 из Банка заданий ФИПИ. Курс полностью соответствует требованиям ЕГЭ-2018.

Курс содержит 5 больших тем, по 2,5 часа каждая. Каждая тема дается с нуля, просто и понятно.

Сотни заданий ЕГЭ. Текстовые задачи и теория вероятностей. Простые и легко запоминаемые алгоритмы решения задач. Геометрия. Теория, справочный материал, разбор всех типов заданий ЕГЭ. Стереометрия. Хитрые приемы решения, полезные шпаргалки, развитие пространственного воображения. Тригонометрия с нуля - до задачи 13. Понимание вместо зубрежки. Наглядное объяснение сложных понятий. Алгебра. Корни, степени и логарифмы, функция и производная. База для решения сложных задач 2 части ЕГЭ.

Параллелограмм - четырехугольник, у которого противоположные стороны попарно параллельны.

Параллелограмм - четырехугольник, у которого противоположные стороны попарно параллельны. Площадь параллелограмма равна произведению его основания (a) на высоту (h). Также можно найте его площадь через две стороны и угол и через диагонали.

Свойства параллелограмма

1. Противоположные стороны тождественны

Первым делом проведем диагональ \(AC \) . Получаются два треугольника: \(ABC \) и \(ADC \) .

Так как \(ABCD \) - параллелограмм, то справедливо следующее:

\(AD || BC \Rightarrow \angle 1 = \angle 2 \) как лежащие накрест.

\(AB || CD \Rightarrow \angle3 = \angle 4 \) как лежащие накрест.

Следовательно, (по второму признаку: и \(AC \) - общая).

И, значит, \(\triangle ABC = \triangle ADC \) , то \(AB = CD \) и \(AD = BC \) .

2. Противоположные углы тождественны

Согласно доказательству свойства 1 мы знаем, что \(\angle 1 = \angle 2, \angle 3 = \angle 4 \) . Таким образом сумма противоположных углов равна: \(\angle 1 + \angle 3 = \angle 2 + \angle 4 \) . Учитывая, что \(\triangle ABC = \triangle ADC \) получаем \(\angle A = \angle C \) , \(\angle B = \angle D \) .

3. Диагонали разделены пополам точкой пересечения

По свойству 1 мы знаем, что противоположные стороны тождественны: \(AB = CD \) . Еще раз отметим накрест лежащие равные углы.

Таким образом видно, что \(\triangle AOB = \triangle COD \) по второму признаку равенства треугольников (два угла и сторона между ними). То есть, \(BO = OD \) (напротив углов \(\angle 2 \) и \(\angle 1 \) ) и \(AO = OC \) (напротив углов \(\angle 3 \) и \(\angle 4 \) соответственно).

Признаки параллелограмма

Если лишь один признак в вашей задаче присутствует, то фигура является параллелограммом и можно использовать, все свойства данной фигуры.

Для лучшего запоминания, заметим, что признак параллелограмма будет отвечать на следующий вопрос - «как узнать?» . То есть, как узнать, что заданная фигура это параллелограмм.

1. Параллелограммом является такой четырехугольник, у которого две стороны равны и параллельны

\(AB = CD \) ; \(AB || CD \Rightarrow ABCD \) - параллелограмм.

Рассмотрим подробнее. Почему \(AD || BC \) ?

\(\triangle ABC = \triangle ADC \) по свойству 1 : \(AB = CD \) , \(\angle 1 = \angle 2 \) как накрест лежащие при параллельных \(AB \) и \(CD \) и секущей \(AC \) .

Но если \(\triangle ABC = \triangle ADC \) , то \(\angle 3 = \angle 4 \) (лежат напротив \(AD || BC \) (\(\angle 3 \) и \(\angle 4 \) - накрест лежащие тоже равны).

Первый признак верен.

2. Параллелограммом является такой четырехугольник, у которого противоположные стороны равны

\(AB = CD \) , \(AD = BC \Rightarrow ABCD \) - параллелограмм.

Рассмотрим данный признак. Еще раз проведем диагональ \(AC \) .

По свойству 1 \(\triangle ABC = \triangle ACD \) .

Из этого следует, что: \(\angle 1 = \angle 2 \Rightarrow AD || BC \) и \(\angle 3 = \angle 4 \Rightarrow AB || CD \) , то есть \(ABCD \) - параллелограмм.

Второй признак верен.

3. Параллелограммом является такой четырехугольник, у которого противоположные углы равны

\(\angle A = \angle C \) , \(\angle B = \angle D \Rightarrow ABCD \) - параллелограмм.

\(2 \alpha + 2 \beta = 360^{\circ} \) (поскольку \(\angle A = \angle C \) , \(\angle B = \angle D \) по условию).

Получается, \(\alpha + \beta = 180^{\circ} \) . Но \(\alpha \) и \(\beta \) являются внутренними односторонними при секущей \(AB \) .

У которого противоположные стороны параллельны, то есть лежат на параллельных прямых. Частными случаями параллелограмма являются прямоугольник , квадрат и ромб .

Свойства

  • Противолежащие стороны параллелограмма равны.
  • Противолежащие углы параллелограмма равны.
  • Сумма углов, прилежащих к одной стороне, равна 180° (по свойству параллельных прямых).
  • Диагонали параллелограмма пересекаются, и точка пересечения делит их пополам: \left|AO\right| = \left|OC\right|, \left|BO\right| = \left|OD\right|.
  • Точка пересечения диагоналей является центром симметрии параллелограмма.
  • Параллелограмм диагональю делится на два равных треугольника.
  • Средние линии параллелограмма пересекаются в точке пересечения его диагоналей. В этой точке две его диагонали и две его средние линии делятся пополам.
  • Тождество параллелограмма : сумма квадратов диагоналей параллелограмма равна удвоенной сумме квадратов его двух смежных сторон: пусть а - длина стороны AB, b - длина стороны BC, d_1 и d_2 - длины диагоналей; тогда d_1^2+d_2^2 = 2(a^2 + b^2).
Тождество параллелограмма есть простое следствие формулы Эйлера для произвольного четырехугольника : учетверённый квадрат расстояния между серединами диагоналей равен сумме квадратов сторон четырёхугольника минус сумма квадратов его диагоналей . У параллелограмма противоположные стороны равны, а расстояние между серединами диагоналей равно нулю.
  • Аффинное преобразование всегда переводит параллелограмм в параллелограмм. Для любого параллелограмма существует аффинное преобразование, которое отображает его в квадрат.

Признаки параллелограмма

Четырёхугольник ABCD является параллелограммом, если выполняется одно из следующих условий (в этом случае выполняются и все остальные):

  1. У четырёхугольника без самопересечений две противоположные стороны одновременно равны и параллельны: AB = CD, AB \parallel CD.
  2. Все противоположные углы попарно равны: \angle A = \angle C, \angle B = \angle D.
  3. У четырёхугольника без самопересечений все противоположные стороны попарно равны: AB = CD, BC=DA.
  4. Все противоположные стороны попарно параллельны: AB \parallel CD, BC \parallel DA.
  5. Диагонали делятся в точке их пересечения пополам: AO = OC, BO = OD.
  6. Сумма соседних углов равна 180 градусов: \angle A + \angle B = 180^\circ, \angle B + \angle C = 180^\circ, \angle C + \angle D = 180^\circ, \angle D + \angle A = 180^\circ.
  7. Сумма расстояний между серединами противоположных сторон выпуклого четырехугольника равна его полупериметру.
  8. Сумма квадратов диагоналей равна сумме квадратов сторон выпуклого четырёхугольника: AC^2+BD^2 = AB^2+BC^2+CD^2+DA^2.

Площадь параллелограмма

Здесь приведены формулы, свойственные именно параллелограмму. См. также формулы для площади произвольных четырёхугольников .

Площадь параллелограмма равна произведению его основания на высоту:

S = ah , где a - сторона, h - высота, проведенная к этой стороне.

Площадь параллелограмма равна произведению его сторон на синус угла между ними:

S = ab\sin \alpha, где a и b - стороны, а \alpha - угол между сторонами a и b.

См. также

Напишите отзыв о статье "Параллелограмм"

Примечания

Отрывок, характеризующий Параллелограмм

– Доктор говорит, что нет опасности, – сказала графиня, но в то время, как она говорила это, она со вздохом подняла глаза кверху, и в этом жесте было выражение, противоречащее ее словам.
– Где он? Можно его видеть, можно? – спросила княжна.
– Сейчас, княжна, сейчас, мой дружок. Это его сын? – сказала она, обращаясь к Николушке, который входил с Десалем. – Мы все поместимся, дом большой. О, какой прелестный мальчик!
Графиня ввела княжну в гостиную. Соня разговаривала с m lle Bourienne. Графиня ласкала мальчика. Старый граф вошел в комнату, приветствуя княжну. Старый граф чрезвычайно переменился с тех пор, как его последний раз видела княжна. Тогда он был бойкий, веселый, самоуверенный старичок, теперь он казался жалким, затерянным человеком. Он, говоря с княжной, беспрестанно оглядывался, как бы спрашивая у всех, то ли он делает, что надобно. После разорения Москвы и его имения, выбитый из привычной колеи, он, видимо, потерял сознание своего значения и чувствовал, что ему уже нет места в жизни.
Несмотря на то волнение, в котором она находилась, несмотря на одно желание поскорее увидать брата и на досаду за то, что в эту минуту, когда ей одного хочется – увидать его, – ее занимают и притворно хвалят ее племянника, княжна замечала все, что делалось вокруг нее, и чувствовала необходимость на время подчиниться этому новому порядку, в который она вступала. Она знала, что все это необходимо, и ей было это трудно, но она не досадовала на них.
– Это моя племянница, – сказал граф, представляя Соню, – вы не знаете ее, княжна?
Княжна повернулась к ней и, стараясь затушить поднявшееся в ее душе враждебное чувство к этой девушке, поцеловала ее. Но ей становилось тяжело оттого, что настроение всех окружающих было так далеко от того, что было в ее душе.
– Где он? – спросила она еще раз, обращаясь ко всем.
– Он внизу, Наташа с ним, – отвечала Соня, краснея. – Пошли узнать. Вы, я думаю, устали, княжна?
У княжны выступили на глаза слезы досады. Она отвернулась и хотела опять спросить у графини, где пройти к нему, как в дверях послышались легкие, стремительные, как будто веселые шаги. Княжна оглянулась и увидела почти вбегающую Наташу, ту Наташу, которая в то давнишнее свидание в Москве так не понравилась ей.
Но не успела княжна взглянуть на лицо этой Наташи, как она поняла, что это был ее искренний товарищ по горю, и потому ее друг. Она бросилась ей навстречу и, обняв ее, заплакала на ее плече.
Как только Наташа, сидевшая у изголовья князя Андрея, узнала о приезде княжны Марьи, она тихо вышла из его комнаты теми быстрыми, как показалось княжне Марье, как будто веселыми шагами и побежала к ней.
На взволнованном лице ее, когда она вбежала в комнату, было только одно выражение – выражение любви, беспредельной любви к нему, к ней, ко всему тому, что было близко любимому человеку, выраженье жалости, страданья за других и страстного желанья отдать себя всю для того, чтобы помочь им. Видно было, что в эту минуту ни одной мысли о себе, о своих отношениях к нему не было в душе Наташи.
Чуткая княжна Марья с первого взгляда на лицо Наташи поняла все это и с горестным наслаждением плакала на ее плече.
– Пойдемте, пойдемте к нему, Мари, – проговорила Наташа, отводя ее в другую комнату.
Княжна Марья подняла лицо, отерла глаза и обратилась к Наташе. Она чувствовала, что от нее она все поймет и узнает.

Это четырёхугольник, противоположные стороны которого попарно параллельны.

Свойство 1 . Любая диагональ параллелограмма делит его на два равных треугольника.

Доказательство . По II признаку (накрест лежащие углы и общая сторона).

Теорема доказана .

Свойство 2 . В параллелограмме противолежащие стороны равны, противолежащие углы равны.

Доказательство .
Аналогично,

Теорема доказана .

Свойство 3. В параллелограмме диагонали точкой пересечения делятся пополам.

Доказательство .

Теорема доказана .

Свойство 4 . Биссектриса угла параллелограмма, пересекая противоположную сторону, делит его на равнобедренный треугольник и трапецию. (Ч. сл. - вершину - два равнобедренных?-ка).

Доказательство .

Теорема доказана .

Свойство 5 . В параллелограмме отрезок с концами на противоположных сторонах, проходящий через точку пересечения диагоналей, делится этой точкой пополам.

Доказательство .

Теорема доказана .

Свойство 6 . Угол между высотами, опущенными из вершины тупого угла параллелограмма, равен острому углу параллелограмма.

Доказательство .

Теорема доказана .

Свойство 7 . Сумма углов параллелограмма, прилежащих к одной стороне, равна 180°.

Доказательство .

Теорема доказана .

Построение биссектрисы угла. Свойства биссектрисы угла треугольника.

1) Построить произвольный луч DE.

2) На данном луче построить произвольную окружность с центром в вершине и такую же
с центром в начале построенного луча.

3) F и G - точки пересечения окружности со сторонами данного угла, H - точка пересечения окружности с построенным лучом

Построить окружность с центром в точке H и радиусом, равным FG.

5) I - точка пересечения окружностей построенного луча.

6) Провести прямую через вершину и I.

IDH - требуемый угол.
)

Свойство 1 . Биссектриса угла треугольника разбивает противоположную сторону пропорционально прилежащим сторонам.

Доказательство . Пусть x, y-отрезки стороны c. Продолжим луч BC. На луче BC отложим от C отрезок CK, равный AC.

Параллелограммом называется четырехугольник, противоположные стороны которого попарно параллельны (рис. 233).

Для произвольного параллелограмма имеют место следующие свойства:

1. Противоположные стороны параллелограмма равны.

Доказательство. В параллелограмме ABCD проведем диагональ АС. Треугольники ACD и АС В равны, как имеющие общую сторону АС и две пары равных углов, прилежащих к ней:

(как накрест лежащие углы при параллельных прямых AD и ВС). Значит, и как стороны равных треугольников, лежащие против равных углов, что и требовалось доказать.

2. Противоположные углы параллелограмма равны:

3. Соседние углы параллелограмма, т. е. углы, прилежащие к одной стороне, составляют в сумме и т. д.

Доказательство свойств 2 и 3 сразу получается из свойств углов при параллельных прямых.

4. Диагонали параллелограмма делят друг друга в точке их пересечения пополам. Иначе говоря,

Доказательство. Треугольники AOD и ВОС равны, так как равны их стороны AD и ВС (свойство 1) и углы, к ним прилежащие (как накрест лежащие углы при параллельных прямых). Отсюда следует и равенство соответствующих сторон этих треугольников: АО что и требовалось доказать.

Каждое из названных четырех свойств характеризует параллелограмм, или, как говорят, является его характеристическим свойством, т. е. всякий четырехугольник, обладающий хотя бы одним из этих свойств, является параллелограммом (и, значит, обладает и всеми остальными тремя свойствами).

Проведем доказательство для каждого свойства отдельно.

1". Если противоположные стороны четырехугольника попарно равны, то он является параллелограммом.

Доказательство. Пусть у четырехугольника ABCD стороны AD и ВС, АВ и CD соответственно равны (рис. 233). Проведем диагональ АС. Треугольники ABC и CDА будут равны, как имеющие три пары равных сторон.

Но тогда углы ВАС и DCА равны и . Параллельность сторон ВС и AD следует из равенства углов CAD и АСВ.

2. Если у четырехугольника две пары противоположных углов равны, то он является параллелограммом.

Доказательство. Пусть . Так как то и стороны AD и ВС параллельны (по признаку параллельности прямых).

3. Предоставляем формулировку и доказательство читателю.

4. Если диагонали четырехугольника взаимно делятся в точке пересечения пополам, то четырехугольник - параллелограмм.

Доказательство. Если АО = ОС, BO = OD (рис. 233), то треугольники AOD и ВОС равны, как имеющие равные углы (вертикальные!) при вершине О, заключенные между парами равных сторон АО и СО, ВО и DO. Из равенства треугольников заключаем, что стороны AD и ВС равны. Также равны стороны АВ и CD, и четырехугольник оказывается параллелограммом по характеристическому свойству Г.

Таким образом, для того чтобы доказать, что данный четырехугольник является параллелограммом, достаточно убедиться в справедливости любого из четырех свойств. Читателю предлагается самостоятельно доказать еще одно характеристическое свойство параллелограмма.

5. Если четырехугольник имеет пару равных, параллельных между собой сторон, то он является параллелограммом.

Иногда какая-нибудь пара параллельных сторон параллелограмма называется его основаниями, тогда две другие называются боковыми сторонами. Отрезок прямой, перпендикулярной к двум сторонам параллелограмма, заключенный между ними, называется высотой параллелограмма. Параллелограмм на рис. 234 имеет высоту h, проведенную к сторонам AD и ВС, вторая его высота представлена отрезком .